ﻻ يوجد ملخص باللغة العربية
A systematic approach based on the principles of supervised learning and design of experiments concepts is introduced to build a surrogate model for estimating the optical properties of fractal aggregates. The surrogate model is built on Gaussian process (GP) regression, and the input points for the GP regression are sampled with an adaptive sequential design algorithm. The covariance functions used are the squared exponential covariance function and the Matern covariance function both with Automatic Relevance Determination (ARD). The optical property considered is extinction efficiency of soot aggregates. The strengths and weaknesses of the proposed methodology are first tested with RDG-FA. Then, surrogate models are developed for the sampled points, for which the extinction efficiency is calculated by DDA. Four different uniformly gridded databases are also constructed for comparison. It is observed that the estimations based on the surrogate model designed with Matern covariance functions is superior to the estimations based on databases in terms of the accuracy of the estimations and the total number of input points they require. Finally, a preliminary surrogate model for S 11 is built to correct RDG-FA predictions with the aim of combining the speed of RDG-FA with the accuracy of DDA.
This paper presents a new Gaussian process (GP) surrogate modeling for predicting the outcome of a physical experiment where some experimental inputs are controlled by other manipulating factors. Particularly, we are interested in the case where the
The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigati
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant vari
Recent works have explored the potential of machine learning as data-driven turbulence closures for RANS and LES techniques. Beyond these advances, the high expressivity and agility of physics-informed neural networks (PINNs) make them promising cand
Gaussian process (GP) regression in large-data contexts, which often arises in surrogate modeling of stochastic simulation experiments, is challenged by cubic runtimes. Coping with input-dependent noise in that setting is doubly so. Recent advances t