ﻻ يوجد ملخص باللغة العربية
The evolution of the fireball in heavy ion collisions is an isentropic process, meaning that it follows a trajectory of constant entropy per baryon in the phase diagram of the strong interaction. Responsible for the collective acceleration of the fireball is the speed of sound of the system, while fluctuations of conserved charges are encoded in quark-number susceptibilities: together, they leave their imprint in final observables. Here, this isentropic evolution will be analysed within chiral effective models that account for both chiral and center symmetry breaking, two central aspects of QCD. Our discussion focusses on the impact on the isentropic trajectories of the treatment of high-momentum modes, of the meson contribution to thermodynamics and of the number of quark flavours.
We discuss three applications of NJL- and PNJL-like models to assess aspects of the QCD phase diagram: First, we study the effect of mesonic correlations on the pressure below and above the finite temperature phase transition within a nonlocal PNJL m
We study the unitarized meson-baryon scattering amplitude at leading order in the strangeness $S=-1$ sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled
The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at pe
We construct the effective potential for a QCD-like theory using the auxiliary field method. The chiral phase transition exhibited by the model at finite temperature and the quark chemical potential is studied from the viewpoint of the shape change o