ترغب بنشر مسار تعليمي؟ اضغط هنا

TESS observations of the WASP-121 b phase curve

138   0   0.0 ( 0 )
 نشر من قبل Tansu Daylan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the red-optical photometry of the ultra-hot Jupiter WASP-121 b as observed by the Transiting Exoplanet Survey Satellite (TESS) and model its atmosphere through a radiative transfer simulation. Given its short orbital period of $sim1.275$ days, inflated state and bright host star, WASP-121 b is exceptionally favorable for detailed atmospheric characterization. Towards this purpose, we use texttt{allesfitter} to characterize its full red-optical phase curve, including the planetary phase modulation and the secondary eclipse. We measure the day and nightside brightness temperatures in the TESS passband as $3012substack{+40 -42}$ K and $2022substack{+254 -602}$ K, respectively, and do not find a statistically significant phase shift between the brightest and substellar points. This is consistent with an inefficient heat recirculation on the planet. We then perform an atmospheric retrieval analysis to infer the dayside atmospheric properties of WASP-121 b such as its bulk composition, albedo and heat recirculation. We confirm the temperature inversion in the atmosphere and suggest H$^-$, TiO and VO as potential causes of the inversion, absorbing heat at optical wavelengths at low pressures. Future HST and JWST observations of WASP-121 b will benefit from its first full phase curve measured by TESS.



قيم البحث

اقرأ أيضاً

We present the detection and characterization of the full-orbit phase curve and secondary eclipse of the ultra-hot Jupiter WASP-33b at optical wavelengths, along with the pulsation spectrum of the host star. We analyzed data collected by the Transiti ng Exoplanet Survey Satellite (TESS) in sector 18. WASP-33b belongs to a very short list of highly irradiated exoplanets that were discovered from the ground and were later visited by TESS. The host star of WASP-33b is of delta Scuti-type and shows nonradial pulsations in the millimagnitude regime, with periods comparable to the period of the primary transit. These completely deform the photometric light curve, which hinders our interpretations. By carrying out a detailed determination of the pulsation spectrum of the host star, we find 29 pulsation frequencies with a signal-to-noise ratio higher than 4. After cleaning the light curve from the stellar pulsations, we confidently report a secondary eclipse depth of 305.8 +/- 35.5 parts-per-million (ppm), along with an amplitude of the phase curve of 100.4 +/- 13.1 ppm and a corresponding westward offset between the region of maximum brightness and the substellar point of 28.7 +/- 7.1 degrees, making WASP-33b one of the few planets with such an offset found so far. Our derived Bond albedo, A_B = 0.369 +/- 0.050, and heat recirculation efficiency, epsilon = 0.189 +/- 0.014, confirm again that he behavior of WASP-33b is similar to that of other hot Jupiters, despite the high irradiation received from its host star. By connecting the amplitude of the phase curve to the primary transit and depths of the secondary eclipse, we determine that the day- and nightside brightness temperatures of WASP-33b are 3014 +/- 60 K and 1605 +/- 45 K, respectively. From the detection of photometric variations due to gravitational interactions, we estimate a planet mass of M_P = 2.81 +/- 0.53 M$_J.
Ultra hot jupiters (UHJs), giant exoplanets with equilibrium temperatures above 2000 K, are ideal laboratories for studying metal compositions of planetary atmospheres. At these temperatures the thermal dissociation of metal-rich molecules into their constituent elements makes these atmospheres conducive for elemental characterisation. Several elements, mostly ionized metals, have been detected in UHJs recently using high resolution transit spectroscopy. Even though a number of neutral transition metals (e.g., Fe, Ti, V, Cr) are expected to be strong sources of optical/NUV opacity and, hence, influence radiative processes in the lower atmospheres of UHJs, only Fe I has been detected to date. We conduct a systematic search for atomic species in the UHJ WASP-121 b. Using theoretical models we present a metric to predict the atomic species likely to be detectable in such planets with high resolution transmission spectroscopy. We search for the predicted species in observations of WASP-121 b and report the first detections of neutral transition metals Cr I and V I in an exoplanet at 3.6 $sigma$ and 4.5 $sigma$, respectively. We confirm previous detections of Fe I and Fe II. Whereas Fe II was detected previously in the NUV, we detect it in the optical. We infer that the neutral elements Fe I, V I, and Cr I are present in the lower atmosphere, as predicted by thermochemical equilibrium, while Fe II is a result of photoionisation in the upper atmosphere. Our study highlights the rich chemical diversity of UHJs.
We observed a transit of WASP-166 b using nine NGTS telescopes simultaneously with TESS observations of the same transit. We achieved a photometric precision of 152 ppm per 30 minutes with the nine NGTS telescopes combined, matching the precision rea ched by TESS for the transit event around this bright (T=8.87) star. The individual NGTS light curve noise is found to be dominated by scintillation noise and appears free from any time-correlated noise or any correlation between telescope systems. We fit the NGTS data for $T_C$ and $R_p/R_*$. We find $T_C$ to be consistent to within 0.25$sigma$ of the result from the TESS data, and the difference between the TESS and NGTS measured $R_p/R_*$ values is 0.9$sigma$. This experiment shows that multi-telescope NGTS photometry can match the precision of TESS for bright stars, and will be a valuable tool in refining the radii and ephemerides for bright TESS candidates and planets. The transit timing achieved will also enable NGTS to measure significant transit timing variations in multi-planet systems.
The large radii of many hot Jupiters can only be matched by models that have hot interior adiabats, and recent theoretical work has shown that the interior evolution of hot Jupiters has a significant impact on their atmospheric structure. Due to its inflated radius, low gravity, and ultra-hot equilibrium temperature, WASP-76b is an ideal case study for the impact of internal evolution on observable properties. Hot interiors should most strongly affect the non-irradiated side of the planet, and thus full phase curve observations are critical to ascertain the effect of the interior on the atmospheres of hot Jupiters. In this work, we present the first Spitzer phase curve observations of WASP-76b. We find that WASP-76b has an ultra-hot day side and relatively cold nightside with brightness temperatures of $2471 pm 27~mathrm{K}$/$1518 pm 61~mathrm{K}$ at $3.6~micron$ and $2699 pm 32~mathrm{K}$/$1259 pm 44~mathrm{K}$ at $4.5~micron$, respectively. These results provide evidence for a dayside thermal inversion. Both channels exhibit small phase offsets of $0.68 pm 0.48^{circ}$ at $3.6~micron$ and $0.67 pm 0.2^{circ}$ at $4.5~mumathrm{m}$. We compare our observations to a suite of general circulation models that consider two end-members of interior temperature along with a broad range of frictional drag strengths. Strong frictional drag is necessary to match the small phase offsets and cold nightside temperatures observed. From our suite of cloud-free GCMs, we find that only cases with a cold interior can reproduce the cold nightsides and large phase curve amplitude at $4.5~micron$, hinting that the hot interior adiabat of WASP-76b does not significantly impact its atmospheric dynamics or that clouds blanket its nightside.
We present the analysis of TESS optical photometry of WASP-121b, which reveal the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the substellar point, showing inefficient heat transport from the dayside (2870 K) to the ni ghtside ($<$ 2200 K) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H$^{-}$ continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا