ﻻ يوجد ملخص باللغة العربية
Given a Riemannian manifold $N^n$ and ${cal Z}in mathfrak{X}(N)$, an isometric immersion $fcolon M^mto N^n$ is said to have the emph{constant ratio property with respect to ${cal Z}$} either if the tangent component ${cal Z}^T_f$ of ${cal Z}$ vanishes identically or if ${cal Z}^T_f$ vanishes nowhere and the ratio $|{cal Z}^perp_f|/|{cal Z}^T_f|$ between the lengths of the normal and tangent components of ${cal Z}$ is constant along $M^m$. It has the emph{principal direction property with respect to ${cal Z}$} if ${cal Z}^T_f$ is an eigenvector of all shape operators of $f$ at all points of $M^m$. In this article we study isometric immersions $fcolon M^mto N^n$ of arbitrary codimension that have either the constant ratio or the principal direction property with respect to distinguished vector fields ${cal Z}$ on space forms, product spaces $Sf^ntimes R$ and $Hy^ntimes R$, where $Sf^n$ and $Hy^n$ are the $n$-dimensional sphere and hyperbolic space, respectively, and, more generally, on warped products $Itimes_{rho}Q_e^n$ of an open interval $Isubset R$ and a space form $Q_e^n$. Starting from the observation that these properties are invariant under conformal changes of the ambient metric, we provide new characterization and classification results of isometric immersions that satisfy either of those properties, or both of them simultaneously, for several relevant instances of ${cal Z}$ as well as simpler descriptions and proofs of some known ones for particular cases of ${cal Z}$ previously considered by many authors.
In this paper we provide an extension to the Jellett-Minkowskis formula for immersed submanifolds into ambient manifolds which possesses a pole and radial curvatures bounded from above or below by the radial sectional curvatures of a rotationally sym
We study invariant submanifolds of manifolds endowed with a normal or complex metric contact pair with decomposable endomorphism field $phi$. For the normal case, we prove that a $phi$-invariant submanifold tangent to a Reeb vector field and orthogon
We study lightlike submanifolds of indefinite statistical manifolds. Contrary to the classical theory of submanifolds of statistical manifolds, lightlike submanifolds of indefinite statistical manifolds need not to be statistical submanifold. Therefo
We show that the category of vector fields on a geometric stack has the structure of a Lie 2-algebra. This proves a conjecture of R.~Hepworth. The construction uses a Lie groupoid that presents the geometric stack. We show that the category of vector
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu