ﻻ يوجد ملخص باللغة العربية
We demonstrate that electronic and magnetic properties of graphene can be tuned via proximity of multiferroic substrate. Our first-principles calculations performed both with and without spin-orbit coupling clearly show that by contacting graphene with bismuth ferrite BiFeO$_3$ (BFO) film, the spin-dependent electronic structure of graphene is strongly impacted both by the magnetic order and by electric polarization in the underlying BFO. Based on extracted Hamiltonian parameters obtained from the graphene band structure, we propose a concept of six-resistance device based on exploring multiferroic proximity effect giving rise to significant proximity electro- (PER), magneto- (PMR), and multiferroic (PMER) resistance effects. This finding paves a way towards multiferroic control of magnetic properties in two dimensional materials.
We report that the {pi}-electrons of graphene can be spin-polarized to create a phase with a significant spin-orbit gap at the Dirac point (DP) using a graphene-interfaced topological insulator hybrid material. We have grown epitaxial Bi2Te2Se (BTS)
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene syste
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI$_3$/SnI$_3$/CrI$_3$ trilayer structure. From first-principles calculations, the BiI$_3$-type SnI$_3$ monolayer without spin-orbit coupling has Dirac cones at t
We report anisotropic magnetoresistance in Pt|Y3Fe5O12 bilayers. In spite of Y3Fe5O12 being a very good electrical insulator, the resistance of the Pt layer reflects its magnetization direction. The effect persists even when a Cu layer is inserted be