ترغب بنشر مسار تعليمي؟ اضغط هنا

Following up Transient Sources at Very High Energies with MAGIC

94   0   0.0 ( 0 )
 نشر من قبل Alessio Berti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several classes of sources are known to emit different messengers. Among them, transient sources are a special case, due to their serendipitous occurrence, time variability and duration on different timescales. They are associated with explosive and catastrophic events where very compact objects like neutron stars and black holes are involved. The difficulty of observing such elusive and possibly short-lasting events requires a fast reaction and a well-organized alert network between different experiments. In order to characterize them in the best possible way, instruments with a wide field of view should serve as external triggers for facilities with small sky coverage. MAGIC, as a Cherenkov telescope, belongs to the latter category. The search for transients by MAGIC is possible thanks to an automatic alert system listening to the alerts sent by the Gamma-ray Coordinate Network (GCN). In this contribution we describe the MAGIC alert system, which was designed mainly for the follow-up of Gamma-Ray Bursts in its initial conception. The alert system was recently updated in a multi-messenger context, receiving alerts also from neutrino and GW observatories. Finally we will present the MAGIC program for transient sources and how it was adapted in the current multi-wavelength and multi-messenger panorama.



قيم البحث

اقرأ أيضاً

The first two LIGO and Virgo observation runs have been important milestones in the gravitational wave (GW) field, thanks to the detection of GW signals from ten binary black hole systems and a binary neutron star system. In order to fully characteri ze the emitting source, the remnant object and its environment, electromagnetic follow-up observations at different wavelengths are essential, as learned from the GW170817/GRB170817A case. Given the quite large localization uncertainties provided by interferometers, the main challenge faced by facilities with a narrow field of view (e.g. Imaging Atmospheric Cherenkov Telescopes, IACTs) is to setup a suitable follow-up strategy in order to observe sky regions with the highest probability to host the electromagnetic (EM) counterpart of the GW signal. As member of the EM follow-up community, the MAGIC collaboration joined this effort in 2014. As the third observation run (O3) is currently ongoing, where both LIGO and Virgo are expected to have much better sensitivities, MAGIC is refining its follow-up strategy to maximize the chances of observing the EM counterparts as soon as possible. In this contribution we will describe this strategy, focusing on the different observation cases, which mainly depends on the information available from both GW and EM partner facilities.
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observation s constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within a MWL context, including an analysis of the Fermi-LAT data over ten years of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.
Extreme high-energy peaked BL Lac objects (EHBLs) are a new emerging class of blazars. The typical two-hump structured spectral energy distribution (SED) is shifted to higher energies with respect to other more established classes of blazars. Multi-w avelength observations allow us to constrain their synchrotron peak in the medium and hard X-ray bands. Their gamma-ray emission dominates above the GeV gamma-ray band, and in some objects it extends up to several TeV (e.g. 1ES 0229+200). Their hard TeV spectrum is also interesting for the implications on the extragalactic background light indirect measurements, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. Up to now, only a few objects have been studied in the TeV gamma-ray range. In this contribution, we will present the new detection of the EHBL object PGC 2402248, recently discovered in TeV gamma rays with the MAGIC telescopes. The analysis results of a set of multi-wavelength simultaneous observations up to the VHE gamma-ray band provide the broad-band SED of the blazar, which will be used to probe different emission models. Given the extreme characteristics of this blazar, constraints on the physical parameters within the framework of leptonic and hadronic models are derived.
The recent milestones in multi-messenger astronomy have opened new ways to study the Unverse. The unprecedented gravitational wave (GW) follow-up campaigns established the power that the combination of different messengers has to identify and study t he nature and evolution of astrophysical phenomena. Here we focus on the search for high-energy gamma ray emission as electromagnetic counterpart of compact binary coalescences with the H.E.S.S. Imaging Air Cherenkov Telescopes (IACTs). In this contribution, the optimized strategies developed specifically for the prompt follow-up of gravitational wave events with H.E.S.S are presented. As illustration, the successful observation campaigns up to this time will be described, including the ones during Observation Run O2 on the binary black hole (BH-BH) merger GW170814 and the binary neutron star (NS-NS) merger GW170817, and an update on recent events occurring during O3. Results of these searches are presented and the constraints that prompt observations can put on very-high-energy, non-thermal emission, are briefly discussed. Finally, an outlook on further improvements for the gravitational waves follow-up program with H.E.S.S. will be provided.
In the last few years the Fermi-LAT instrument has detected GeV gamma-ray emission from several novae. Such GeV emission can be interpreted in terms of inverse Compton emission from electrons accelerated in the shock or in terms of emission from hadr ons accelerated in the same conditions. The latter might reach much higher energies and could produce a second component in the gamma-ray spectrum at TeV energies. We perform follow-up observations of selected novae and dwarf novae in search of the second component in TeV energy gamma rays. This can shed light on the acceleration process of leptons and hadrons in nova explosions. We have performed observations with the MAGIC telescopes of 3 sources, a symbiotic nova YY Her, a dwarf nova ASASSN-13ax and a classical nova V339 Del, shortly after their outbursts. We did not detect TeV gamma-ray emission from any of the objects observed. The TeV upper limits from MAGIC observations and the GeV detection by Fermi constrain the acceleration parameters for electrons and hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا