ﻻ يوجد ملخص باللغة العربية
Uniaxial pressure applied along an Ru-Ru bond direction induces an elliptical distortion of the largest Fermi surface of Sr$_2$RuO$_4$, eventually causing a Fermi surface topological transition, also known as a Lifshitz transition, into an open Fermi surface. There are various anomalies in low-temperature properties associated with this transition, including maxima in the superconducting critical temperature and in resistivity. In the present paper, we report new measurements, employing new uniaxial stress apparatus and new measurements of the low-temperature elastic moduli, of the strain at which this Lifshitz transition occurs: a longitudinal strain $varepsilon_{xx}$ of $(-0.44pm0.06)cdot10^{-2}$, which corresponds to a B$_{1g}$ strain $varepsilon_{xx} - varepsilon_{yy}$ of $(-0.66pm0.09)cdot10^{-2}$. This is considerably smaller than the strain corresponding to a Lifshitz transition in density functional theory calculations, even if the spin-orbit coupling is taken into account. Using dynamical mean-field theory we show that electronic correlations reduce the critical strain. It turns out that the orbital anisotropy of the local Coulomb interaction on the Ru site is furthermore important to bring this critical strain close to the experimental number, and thus well into the experimentally accessible range of strains.
Strain tuning Sr$_{2}$RuO$_{4}$ through the Lifshitz point, where the Van Hove singularity of the electronic spectrum crosses the Fermi energy, is expected to cause a change in the temperature dependence of the electrical resistivity from its Fermi l
We have studied the influence of a magnetic field on the thermodynamic properties of Ca$_{2-x}$Sr$_{x}$RuO$_4$ in the intermediate metallic region with tilt and rotational distortions ($0.2leq x leq 0.5$). We find strong and anisotropic thermal expan
Applying time differential perturbed angular correlation (TDPAC) spectroscopy and emph{ab initio} calculations, we have investigated possible lattice instabilities in Sr$_{2}$RuO$_{4}$ by studying the electric quadrupole interaction of a $^{111}$Cd p
Pressure represents a clean tuning parameter for traversing the complex phase diagrams of interacting electron systems and as such has proved of key importance in the study of quantum materials. Application of controlled uniaxial pressure has recentl
We present an implementation of the rotationally invariant slave boson technique as an impurity solver for density functional theory plus dynamical mean field theory (DFT+DMFT). Our approach provides explicit relations between quantities in the local