ﻻ يوجد ملخص باللغة العربية
Neural networks are discrete entities: subdivided into discrete layers and parametrized by weights which are iteratively optimized via difference equations. Recent work proposes networks with layer outputs which are no longer quantized but are solutions of an ordinary differential equation (ODE); however, these networks are still optimized via discrete methods (e.g. gradient descent). In this paper, we explore a different direction: namely, we propose a novel framework for learning in which the parameters themselves are solutions of ODEs. By viewing the optimization process as the evolution of a port-Hamiltonian system, we can ensure convergence to a minimum of the objective function. Numerical experiments have been performed to show the validity and effectiveness of the proposed methods.
Each year a growing number of wind farms are being added to power grids to generate electricity. The power curve of a wind turbine, which exhibits the relationship between generated power and wind speed, plays a major role in assessing the performanc
Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without a
We introduce a method to train Quantized Neural Networks (QNNs) --- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-time the quantized weights and activations are used for computing the parame
Binarized neural networks, or BNNs, show great promise in edge-side applications with resource limited hardware, but raise the concerns of reduced accuracy. Motivated by the complex neural networks, in this paper we introduce complex representation i
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we