ﻻ يوجد ملخص باللغة العربية
We follow up the work, where in light of the Picard-Lefschetz thimble approach, we split up the real-time path integral into two parts: the initial density matrix part which can be represented via an ensemble of initial conditions, and the dynamic part of the path integral which corresponds to the integration over field variables at all later times. This turns the path integral into a two-stage problem where, for each initial condition, there exits one and only one critical point and hence a single thimble in the complex space, whose existence and uniqueness are guaranteed by the characteristics of the initial value problem. In this paper, we test the method for a fully quantum mechanical phenomenon, quantum tunnelling in quantum mechanics. We compare the method to solving the Schrodinger equation numerically, and to the classical-statistical approximation, which emerges naturally in a well-defined limit. We find that the Picard-Lefschetz result matches the expectation from quantum mechanics and that, for this application, the classical-statistical approximation does not.
Inspired by Lefschetz thimble theory, we treat Quantum Field Theory as a statistical theory with a complex Probability Distribution Function (PDF). Such complex-valued PDFs permit the violation of Bell-type inequalities, which cannot be violated by a
Direct numerical evaluation of the real-time path integral has a well-known sign problem that makes convergence exponentially slow. One promising remedy is to use Picard-Lefschetz theory to flow the domain of the field variables into the complex plan
We consider multi-flavor massless $(1+1)$-dimensional QED with chemical potentials at finite spatial length and the zero-temperature limit. Its sign problem is solved using the mean-field calculation with complex saddle points.
We find a new contribution in wave-packet scatterings, which has been overlooked in the standard formulation of S-matrix. As a concrete example, we consider a two-to-two scattering of light scalars $phi$ by another intermediate heavy scalar $Phi$, in
Thimble regularisation is a possible solution to the sign problem, which is evaded by formulating quantum field theories on manifolds where the imaginary part of the action stays constant (Lefschetz thimbles). A major obstacle is due to the fact that