ﻻ يوجد ملخص باللغة العربية
Quantum sorter has gained a lot of attention during the last years due to its wide application in quantum information processing and quantum technologies. A challenging task is the construction of a quantum sorter, which collect many high-dimensional quantum systems, which are simultaneously incident on different input ports of the device. In this paper we give the definition of the general quantum sorter of multi-level quantum systems. We prove the impossibility of the construction of the perfect quantum sorter, which works for many particles incident on any input port, while keeping their states unmodified. Further we propose an approximate multi-particle multi-input-port quantum sorter, which performs the selection of the particles in a certain output port according to the properties of the initial states, but changing the final states. This method is useful for those situations which require high speed of quantum state sorting. Thus, the information contained in the initial states of the particles is revealed by the click statistics of the detectors situated in each output port.
Greenberger-Horne-Zeilinger states are intuitively known to be the most non-classical ones. They lead to the most radically nonclassical behavior of three or more entangled quantum subsystems. However, in case of two-dimensional systems, it has been
The novel experimental realization of four-level optical quantum systems (ququarts) is presented. We exploit the polarization properties of frequency non-degenerate biphoton field to obtain such systems. A simple method that does not rely on interfer
We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency
We propose a generalization of quantum teleportation: the so-called many-to-many quantum communication of the information of a d-level system from N spatially separated senders to M>N receivers situated at different locations. We extend the concept o
We propose a wavelength-mode sorter realized by multi-plane light conversion (MPLC). For the first time, to our best knowledge, wavelengths and spatial modes can be sorted simultaneously. We first demonstrate pure wavelength sorting by a series of ph