ﻻ يوجد ملخص باللغة العربية
The single-crystal growth, stoichiometry, and structure of Rb1-xFe2-ySe2-zSz crystals with substitution of Se by S are reported. The variation of the magnetic and thermodynamic parameters of samples was studied by differential-scanning calorimetry, magnetic susceptibility, conductivity, and specific heat. The experimental results are discussed within a T-z phase diagram, which includes vacancy-ordered and vacancy-disordered antiferromagnetic (AFM), superconducting (SC), and non-superconducting phases. The structural study revealed change in the local environment of the Fe tetrahedrons depending on substitution: a reduction of the Fe-Fe and Fe-Ch(chalcogen) bond lengths and a tendency for the six out of eight bond angles to approach values for a regular tetrahedron suggesting a reduction of structural distortions with substitution. With increasing substitution, a lowering of the superconducting transition temperature Tc was observed; the percolation threshold for the SC state is located at the substitution z = 1.2. The SC state was found to coexist with the AFM state that persists in all samples independent of substitution. The temperature of the transition into the AFM state TN shows a monotonous decrease indicating a weakening of the AFM interactions with increasing substitution. The AFM phase exhibits an iron-vacancy-ordered structure below the structural transition at Ts. The temperature Ts shows a non-monotonous variation: a decrease with increasing z up to 1.3, followed by an increase for further increasing z. The suppression of the superconductivity with substitution is accompanied by a significant reduction of the density of states at the Fermi energy and a weakening of the electronic correlations in the studied system.
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron in
The electronic structure of the newly discovered superconducting perovskite MgCNi$_3$ is calculated using the LMTO and KKR methods. The states near the Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while the electron-phonon
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole
High-quality single crystals of K0.8Fe2Se1.4S0.4 are successfully synthesized by self-flux method with the superconducting transition temperatures Tconset = 32.8 K and Tczero = 31.2 K. In contrast to external pressure effect on superconductivity, the
Using muon-spin rotation, we studied the in-plane (lambda_ab) and the out of plane (lambda_c) magnetic field penetration depth in SrFe_1.75Co_0.25As_2 (T_c=13.3 K). Both lambda_ab(T) and lambda_c(T) are consistent with the presence of two superconduc