ترغب بنشر مسار تعليمي؟ اضغط هنا

A Census of Early Phase High-Mass Star Formation in the Central Molecular Zone

90   0   0.0 ( 0 )
 نشر من قبل Xing Lu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new observations of C-band continuum emission and masers to assess high-mass ($>$8 $M_odot$) star formation at early evolutionary phases in the inner 200 pc of the Central Molecular Zone (CMZ) of the Galaxy. The continuum observation is complete to free-free emission from stars above 10-11 $M_odot$ in 91% of the covered area. We identify 104 compact sources in the continuum emission, among which five are confirmed ultracompact H II regions, 12 are candidates of ultra-compact H II regions, and the remaining 87 sources are mostly massive stars in clusters, field stars, evolved stars, pulsars, extragalactic sources, or of unknown nature that is to be investigated. We detect class II CH$_3$OH masers at 23 positions, among which six are new detections. We confirm six known H$_2$CO masers in two high-mass star forming regions, and detect two new H$_2$CO masers toward the Sgr C cloud, making it the ninth region in the Galaxy that contains masers of this type. In spite of these detections, we find that current high-mass star formation in the inner CMZ is only taking place in seven isolated clouds. The results suggest that star formation at early evolutionary phases in the CMZ is about 10 times less efficient than expected by the dense gas star formation relation, which is in line with previous studies that focus on more evolved phases of star formation. This means that if there will be any impending, next burst of star formation in the CMZ, it has not yet begun.



قيم البحث

اقرأ أيضاً

The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations res olve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $Rgtrsim100 {, rm pc}$, a significant amount also occurs closer to SgrA* at $R lesssim 10{, rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the pearls-on-a-string scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations ($sim100$ Myr), the depletion time of the CMZ is constant within a factor of $sim2$. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born.
We present a study of the gas cycle and star formation history in the central 500 pc of the Milky Way, known as Central Molecular Zone (CMZ). Through hydrodynamical simulations of the inner 4.5 kpc of our Galaxy, we follow the gas cycle in a complete ly self-consistent way, starting from gas radial inflow due to the Galactic bar, the channelling of this gas into a dense, star-forming ring/stream at ~ 200 - 300 pc from the Galactic centre, and the launching of galactic outflows powered by stellar feedback. We find that star formation activity in the CMZ goes through oscillatory burst/quench cycles, with a period of tens to hundreds of Myr, characterised by roughly constant gas mass but order-of-magnitude level variations in the star formation rate. Comparison with the observed present-day star formation rate of the CMZ suggests that we are currently near a minimum of this cycle. Stellar feedback drives a mainly two-phase wind off the Galactic disc. The warm phase dominates the mass flux, and carries 100 - 200 % of the gas mass converted into stars. However, most of this gas goes into a fountain and falls back onto the disc rather than escaping the Galaxy. The hot phase carries most of the energy, with a time-averaged energy outflow rate of 10 - 20 % of the supernova energy budget.
291 - A. Bik 2010
We present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected on the IRAC images in which a cluster of intermediate- a nd low-mass class II objects is found. At the northern edge of this bubble, an HII region is located, ionized by 3 OB stars. Intermediate mass stars (2 - 3 Msun) are detected of G- and K- spectral type. These stars are still in the pre-main sequence (PMS) phase. North of the HII region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 +- 0.2 kpc and an age estimate of 2 - 1 Myrs is derived from the properties of the PMS stars inside the HII region. The most likely scenario for the formation of the three regions is that star formation propagates from South to North. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the HII region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion as a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible: (a) The bubble with the cluster of low- and intermediate mass stars triggered the formation of the O star at the edge of the molecular cloud which in turn induces the current star-formation in the molecular cloud. (b) An external triggering is responsible for the star-formation propagating from South to North. [abridged]
135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here w e determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field and filamentary structure. Using column-density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width W_fil=0.17$pm$0.08pc and the sonic scale {lambda}_sonic=0.15$pm$0.11pc of the turbulence, and find W_fil~{lambda}_sonic. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra, which is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity PDF. After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8$pm$0.2km/s and 3.9$pm$0.1km/s, respectively. Using magnetohydrodynamical simulations, we find that G0.253+0.016s turbulent magnetic field B_turb=130$pm$50$mu$G is only ~1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter b=0.22$pm$0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b>0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star formation rate (SFR) by a factor of 6.9 compared to typical nearby clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا