ﻻ يوجد ملخص باللغة العربية
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS$_2$ using a combination of scanning tunnelling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multi-valley valence band structure of WS$_2$, whereby localized states originating from the secondary valence band maximum at $Gamma$ hybridize with continuum states from the primary valence band maximum at K/K$^{prime}$. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds.
A hallmark of topological superconductivity is the non-Abelian statistics of Majorana bound states (MBS), its chargeless zero-energy emergent quasiparticles. The resulting fractionalization of a single electron, stored nonlocally as a two spatially s
The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron-hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical tr
Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconductors with a linear-dichroic light-matter interaction and a widely-tunable direct-band gap in the infrared frequency range. Despite rece
We study the Hall conductivity of a two-dimensional electron gas under an inhomogeneous magnetic field $B(x)$. First, we prove using the quantum kinetic theory that an odd magnetic field can lead to a purely nonlinear Hall response. Second, consideri
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emissi