ﻻ يوجد ملخص باللغة العربية
In primate brains, tactile and proprioceptive inputs are relayed to the somatosensory cortex which is known for somatotopic representations, or, homunculi. Our research centers on understanding the mechanisms of the formation of these and more higher-level body representations (body schema) by using humanoid robots and neural networks to construct models. We specifically focus on how spatial representation of the body may be learned from somatosensory information in self-touch configurations. In this work, we target the representation of proprioceptive inputs, which we take to be joint angles in the robot. The inputs collected in different body postures serve as inputs to a Self-Organizing Map (SOM) with a 2D lattice on the output. With unrestricted, all-to-all connections, the map is not capable of representing the input space while preserving the topological relationships, because the intrinsic dimensionality of the body posture space is too large. Hence, we use a method we developed previously for tactile inputs (Hoffmann, Straka et al. 2018) called MRF-SOM, where the Maximum Receptive Field of output neurons is restricted so they only learn to represent specific parts of the input space. This is in line with the receptive fields of neurons in somatosensory areas representing proprioception that often respond to combination of few joints (e.g. wrist and elbow).
The mechanisms of infant development are far from understood. Learning about ones own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give ri
This paper presents a new learning framework that leverages the knowledge from imitation learning, deep reinforcement learning, and control theories to achieve human-style locomotion that is natural, dynamic, and robust for humanoids. We proposed nov
Humanoid robots could be versatile and intuitive human avatars that operate remotely in inaccessible places: the robot could reproduce in the remote location the movements of an operator equipped with a wearable motion capture device while sending vi
Stable bipedal walking is a key prerequisite for humanoid robots to reach their potential of being versatile helpers in our everyday environments. Bipedal walking is, however, a complex motion that requires the coordination of many degrees of freedom
We perform a Systematic Literature Review to discover how Humanoid robots are being applied in Socially Assistive Robotics experiments. Our search returned 24 papers, from which 16 were included for closer analysis. To do this analysis we used a conc