ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting On-chip Fourier Transform Spectrometer

92   0   0.0 ( 0 )
 نشر من قبل Ritoban Basu Thakur
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current, which can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling an on-chip spectrometer. The utility of such compact spectrometers are discussed, along with their natural connection with parametric amplifiers.



قيم البحث

اقرأ أيضاً

We have constructed a Fourier-transform spectrometer (FTS) operating between 50 and 330 GHz with minimum volume (355 x260 x64 mm) and weight (13 lbs) while maximizing optical throughput (100 $mathrm{mm}^2$ sr) and optimizing the spectral resolution ( 4 GHz). This FTS is designed as a polarizing Martin-Puplett interferometer with unobstructed input and output in which both input polarizations undergo interference. The instrument construction is simple with mirrors milled on the box walls and one motorized stage as the single moving element. We characterize the performance of the FTS, compare the measurements to an optical simulation, and discuss features that relate to details of the FTS design. The simulation is also used to determine the tolerance of optical alignments for the required specifications. We detail the FTS mechanical design and provide the control software as well as the analysis code online.
Terahertz spectrometers with a wide instantaneous frequency coverage for passive remote sensing are enormously attractive for many terahertz applications, such as astronomy, atmospheric science and security. Here we demonstrate a wide-band terahertz spectrometer based on a single superconducting chip. The chip consists of an antenna coupled to a transmission line filterbank, with a microwave kinetic inductance detector behind each filter. Using frequency division multiplexing, all detectors are read-out simultaneously creating a wide-band spectrometer with an instantaneous bandwidth of 45 GHz centered around 350 GHz. The spectrometer has a spectral resolution of $F/Delta F=380$ and reaches photon-noise limited sensitivity. We discuss the chip design and fabrication, as well as the system integration and testing. We confirm full system operation by the detection of an emission line spectrum of methanol gas. The proposed concept allows for spectroscopic radiation detection over large bandwidths and resolutions up to $F/Delta Fsim1000$, all using a chip area of a few $mathrm{cm^2}$. This will allow the construction of medium resolution imaging spectrometers with unprecedented speed and sensitivity.
A systematic programme of calibration observations was carried out to monitor the performance of the SPIRE FTS instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroid s, line sources, dark sky, and cross-calibration sources were made in order to monitor repeatability and sensitivity, and to improve FTS calibration. We present a complete analysis of the full set of calibration observations and use them to assess the performance of the FTS. Particular care is taken to understand and separate out the effect of pointing uncertainties, including the position of the internal beam steering mirror for sparse observations in the early part of the mission. The repeatability of spectral line centre positions is <5km/s, for lines with signal-to-noise ratios >40, corresponding to <0.5-2.0% of a resolution element. For spectral line flux, the repeatability is better than 6%, which improves to 1-2% for spectra corrected for pointing offsets. The continuum repeatability is 4.4% for the SLW band and 13.6% for the SSW band, which reduces to ~1% once the data have been corrected for pointing offsets. Observations of dark sky were used to assess the sensitivity and the systematic offset in the continuum, both of which were found to be consistent across the FTS detector arrays. The average point-source calibrated sensitivity for the centre detectors is 0.20 and 0.21 Jy [1 sigma; 1 hour], for SLW and SSW. The average continuum offset is 0.40 Jy for the SLW band and 0.28 Jy for the SSW band.
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We de scribe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.
We describe the SpArc science gateway for spectral data obtained during the period from 1975 through 1995 at the Kitt Peak National Observatory using the Fourier Transform Spectrometer (FTS) in operation at the Mayall 4-m telescope. SpArc is hosted b y Indiana University Bloomington and is available for public access. The archive includes nearly 10,000 individual spectra of more than 800 different astronomical sources including stars, nebulae, galaxies, and Solar System objects. We briefly describe the FTS instrument itself, and summarize the conversion of the original interferograms into spectral data and the process for recovering the data into FITS files. The architecture of the archive is discussed, and the process for retrieving data from the archive is introduced. Sample use cases showing typical FTS spectra are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا