ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Photo Realism for Domain Adaptation from Synthetic Data

120   0   0.0 ( 0 )
 نشر من قبل Kristofer Schlachter
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As synthetic imagery is used more frequently in training deep models, it is important to understand how different synthesis techniques impact the performance of such models. In this work, we perform a thorough evaluation of the effectiveness of several different synthesis techniques and their impact on the complexity of classifier domain adaptation to the real underlying data distribution that they seek to replicate. In addition, we propose a novel learned synthesis technique to better train classifier models than state-of-the-art offline graphical methods, while using significantly less computational resources. We accomplish this by learning a generative model to perform shading of synthetic geometry conditioned on a g-buffer representation of the scene to render, as well as a low sample Monte Carlo rendered image. The major contributions are (i) a dataset that allows comparison of real and synthet



قيم البحث

اقرأ أيضاً

Majority of state-of-the-art monocular depth estimation methods are supervised learning approaches. The success of such approaches heavily depends on the high-quality depth labels which are expensive to obtain. Some recent methods try to learn depth networks by leveraging unsupervised cues from monocular videos which are easier to acquire but less reliable. In this paper, we propose to resolve this dilemma by transferring knowledge from synthetic videos with easily obtainable ground-truth depth labels. Due to the stylish difference between synthetic and real images, we propose a temporally-consistent domain adaptation (TCDA) approach that simultaneously explores labels in the synthetic domain and temporal constraints in the videos to improve style transfer and depth prediction. Furthermore, we make use of the ground-truth optical flow and pose information in the synthetic data to learn moving mask and pose prediction networks. The learned moving masks can filter out moving regions that produces erroneous temporal constraints and the estimated poses provide better initializations for estimating temporal constraints. Experimental results demonstrate the effectiveness of our method and comparable performance against state-of-the-art.
We propose a segmentation framework that uses deep neural networks and introduce two innovations. First, we describe a biophysics-based domain adaptation method. Second, we propose an automatic method to segment white and gray matter, and cerebrospin al fluid, in addition to tumorous tissue. Regarding our first innovation, we use a domain adaptation framework that combines a novel multispecies biophysical tumor growth model with a generative adversarial model to create realistic looking synthetic multimodal MR images with known segmentation. Regarding our second innovation, we propose an automatic approach to enrich available segmentation data by computing the segmentation for healthy tissues. This segmentation, which is done using diffeomorphic image registration between the BraTS training data and a set of prelabeled atlases, provides more information for training and reduces the class imbalance problem. Our overall approach is not specific to any particular neural network and can be used in conjunction with existing solutions. We demonstrate the performance improvement using a 2D U-Net for the BraTS18 segmentation challenge. Our biophysics based domain adaptation achieves better results, as compared to the existing state-of-the-art GAN model used to create synthetic data for training.
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain l evel or category level, using convolution neural networks (CNNs)-based frameworks. One fundamental problem for the category level based UDA is the production of pseudo labels for samples in target domain, which are usually too noisy for accurate domain alignment, inevitably compromising the UDA performance. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on Office-Home, VisDA-2017, and DomainNet datasets.
In visual domain adaptation (DA), separating the domain-specific characteristics from the domain-invariant representations is an ill-posed problem. Existing methods apply different kinds of priors or directly minimize the domain discrepancy to addres s this problem, which lack flexibility in handling real-world situations. Another research pipeline expresses the domain-specific information as a gradual transferring process, which tends to be suboptimal in accurately removing the domain-specific properties. In this paper, we address the modeling of domain-invariant and domain-specific information from the heuristic search perspective. We identify the characteristics in the existing representations that lead to larger domain discrepancy as the heuristic representations. With the guidance of heuristic representations, we formulate a principled framework of Heuristic Domain Adaptation (HDA) with well-founded theoretical guarantees. To perform HDA, the cosine similarity scores and independence measurements between domain-invariant and domain-specific representations are cast into the constraints at the initial and final states during the learning procedure. Similar to the final condition of heuristic search, we further derive a constraint enforcing the final range of heuristic network output to be small. Accordingly, we propose Heuristic Domain Adaptation Network (HDAN), which explicitly learns the domain-invariant and domain-specific representations with the above mentioned constraints. Extensive experiments show that HDAN has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA. The code is available at https://github.com/cuishuhao/HDA.
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain adaptation remains largely underexp lored. In this paper, we propose to extend contrastive learning to a new domain adaptation setting, a particular situation occurring where the similarity is learned and deployed on samples following different probability distributions without access to labels. Contrastive learning learns by comparing and contrasting positive and negative pairs of samples in an unsupervised setting without access to source and target labels. We have developed a variation of a recently proposed contrastive learning framework that helps tackle the domain adaptation problem, further identifying and removing possible negatives similar to the anchor to mitigate the effects of false negatives. Extensive experiments demonstrate that the proposed method adapts well, and improves the performance on the downstream domain adaptation task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا