ﻻ يوجد ملخص باللغة العربية
In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as well as in exterior circular domains, in punctured disks and in the punctured plane. We always assume rigid wall boundary conditions. We prove that, if the flow does not have any stagnation point, and if it satisfies further conditions at infinity in the case of an exterior domain or at the center in the case of a punctured disk or the punctured plane, then the flow is circular, namely the streamlines are concentric circles. In other words, the flow then inherits the radial symmetry of the domain. The proofs are based on the study of the trajectories of the flow and the orthogonal trajectories of the gradient of the stream function, which is shown to satisfy a semilinear elliptic equation in the whole domain. In exterior or punctured domains, the method of moving planes is applied to some almost circular domains located between some streamlines of the flow, and the radial symmetry of the stream function is shown by a limiting argument. The paper also contains two Serrin-type results in simply or doubly connected bounded domains with free boundaries. Here, the flows are further assumed to have constant norm on each connected component of the boundary and the domains are then proved to be disks or annuli.
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique
On the set of dissipative solutions to the multi-dimensional isentropic Euler equations we introduce a quasi-order by comparing the acceleration at all times. This quasi-order is continuous with respect to a suitable notion of convergence of dissipat
The Onsagers conjecture has two parts: conservation of energy, if the exponent is larger than $1/3$ and the possibility of dissipative Euler solutions, if the exponent is less or equal than $1/3$. The paper proves half of the conjecture, the conservation part, in bounded domains.
We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbo
In this paper, we investigate the well-posedness theory of compressible jet flows for two dimensional steady Euler system with non-zero vorticity. One of the key observations is that the stream function formulation for two dimensional compressible st