ﻻ يوجد ملخص باللغة العربية
High index dielectric nanostructure supports different types of resonant modes. However, it is very challenging to achieve high-Q factor in a single subwavelength dielectric nanoresonator due to non-hermtian property of the open system. Here, we present a universal approach of finding out a series of high-Q resonant modes in a single nonspherical dielectric nanocavity by exploring quasi-bound state in the continuum. Unlike conventional method relying on heavy computation (ie, frequency scanning by FDTD), our approach is built upon leaky mode engineering, through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the eigenvalue for pair leaky modes. The Q-factor can be up to 2.3*10^4 for square subwavelength nanowire (NW) (n=4), which is 64 times larger than the highest Q-factor (Q=360) reported so far in single subwavelength nanodisk. Such high-Q modes can be attributed to suppressed radiation in the corresponding eigenchannels and simultaneously quenched electric(magnetic) at momentum space. As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes (Q=380) in the scattering spectrum of a single silicon subwavelength nanowire.
It is common understanding that multilayered dielectric metamaterials, in the regime of deeply subwavelength layers, are accurately described by simple effective-medium models based on mixing formulas that do not depend on the spatial arrangement. In
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical f
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of
Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two