ﻻ يوجد ملخص باللغة العربية
Engineering the entire genome of an organism enables large-scale changes in organization, function, and external interactions, with significant implications for industry, medicine, and the environment. Improvements to DNA synthesis and organism engineering are already enabling substantial changes to organisms with megabase genomes, such as Escherichia coli and Saccharomyces cerevisiae. Simultaneously, recent advances in genome-scale modeling are increasingly informing the design of metabolic networks. However, major challenges remain for integrating these and other relevant technologies into workflows that can scale to the engineering of gigabase genomes. In particular, we find that a major under-recognized challenge is coordinating the flow of models, designs, constructs, and measurements across the large teams and complex technological systems that will likely be required for gigabase genome engineering. We recommend that the community address these challenges by 1) adopting and extending existing standards and technologies for representing and exchanging information at the gigabase genomic scale, 2) developing new technologies to address major open questions around data curation and quality control, 3) conducting fundamental research on the integration of modeling and design at the genomic scale, and 4) developing new legal and contractual infrastructure to better enable collaboration across multiple institutions.
Data on the number of Open Reading Frames (ORFs) coded by genomes from the 3 domains of Life show some notable general features including essential differences between the Prokaryotes and Eukaryotes, with the number of ORFs growing linearly with tota
Being able to store and transmit human genome sequences is an important part in genomic research and industrial applications. The complete human genome has 3.1 billion base pairs (haploid), and storing the entire genome naively takes about 3 GB, whic
The problem of the directionality of genome evolution is studied from the information-theoretic view. We propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion
We calculate the mutual information function for each of the 24 chromosomes in the human genome. The same correlation pattern is observed regardless the individual functional features of each chromosome. Moreover, correlations of different scale leng
Motivation: The rapid growth in genome-wide association studies (GWAS) in plants and animals has brought about the need for a central resource that facilitates i) performing GWAS, ii) accessing data and results of other GWAS, and iii) enabling all us