Threshold Greedy Based Task Allocation for Multiple Robot Operations


الملخص بالإنكليزية

This paper deals with large-scale decentralised task allocation problems for multiple heterogeneous robots with monotone submodular objective functions. One of the significant challenges with the large-scale decentralised task allocation problem is the NP-hardness for computation and communication. This paper proposes a decentralised Decreasing Threshold Task Allocation (DTTA) algorithm that enables parallel allocation by leveraging a decreasing threshold to handle the NP-hardness. Then DTTA is upgraded to a more practical version Lazy Decreasing Threshold Task Allocation (LDTTA) by combining a variant of Lazy strategy. DTTA and LDTTA can release both computational and communicating burden for multiple robots in a decentralised network while providing an optimality bound of solution quality. To examine the performance of the proposed algorithms, this paper models a multi-target surveillance scenario and conducts Monte-Carlo simulations. Simulation results reveal that the proposed algorithms achieve similar function values but consume much less running time and consensus steps compared with benchmark decentralised task allocation algorithms.

تحميل البحث