ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on stoichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.
The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, it
The field of two-dimensional topological semimetals, which emerged at the intersection of two-dimensional materials and topological materials, have been rapidly developing in recent years. In this article, we briefly review the progress in this field
We report on a theoretical study of collective electronic excitations in single-layer antimony crystals (antimonene), a novel two-dimensional semiconductor with strong spin-orbit coupling. Based on a tight-binding model, we consider electron-doped an
We report a stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical and transport studies show that the material is qualitatively different from the known graphene-based nonstoic
Stannous selenide is a layered semiconductor that is a polar analogue of black phosphorus, and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been ex