ﻻ يوجد ملخص باللغة العربية
We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic polarization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics.
The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and ex
The study of memory effects in quantum channels helps in developing characterization methods for open quantum systems and strategies for quantum error correction. Two main sets of channels exist, corresponding to system dynamics with no memory (Marko
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian be
We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian process. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical pr
Noisy Intermediate Scale Quantum (NISQ) devices have been proposed as a versatile tool for simulating open quantum systems. Recently, the use of NISQ devices as simulators for non-Markovian open quantum systems has helped verify the current descripti