ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-agent Learning for Neural Machine Translation

131   0   0.0 ( 0 )
 نشر من قبل Hao Xiong
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional Neural Machine Translation (NMT) models benefit from the training with an additional agent, e.g., dual learning, and bidirectional decoding with one agent decoding from left to right and the other decoding in the opposite direction. In this paper, we extend the training framework to the multi-agent scenario by introducing diverse agents in an interactive updating process. At training time, each agent learns advanced knowledge from others, and they work together to improve translation quality. Experimental results on NIST Chinese-English, IWSLT 2014 German-English, WMT 2014 English-German and large-scale Chinese-English translation tasks indicate that our approach achieves absolute improvements over the strong baseline systems and shows competitive performance on all tasks.



قيم البحث

اقرأ أيضاً

While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
Traditional neural machine translation is limited to the topmost encoder layers context representation and cannot directly perceive the lower encoder layers. Existing solutions usually rely on the adjustment of network architecture, making the calcul ation more complicated or introducing additional structural restrictions. In this work, we propose layer-wise multi-view learning to solve this problem, circumventing the necessity to change the model structure. We regard each encoder layers off-the-shelf output, a by-product in layer-by-layer encoding, as the redundant view for the input sentence. In this way, in addition to the topmost encoder layer (referred to as the primary view), we also incorporate an intermediate encoder layer as the auxiliary view. We feed the two views to a partially shared decoder to maintain independent prediction. Consistency regularization based on KL divergence is used to encourage the two views to learn from each other. Extensive experimental results on five translation tasks show that our approach yields stable improvements over multiple strong baselines. As another bonus, our method is agnostic to network architectures and can maintain the same inference speed as the original model.
Attention-based Encoder-Decoder has the effective architecture for neural machine translation (NMT), which typically relies on recurrent neural networks (RNN) to build the blocks that will be lately called by attentive reader during the decoding proc ess. This design of encoder yields relatively uniform composition on source sentence, despite the gating mechanism employed in encoding RNN. On the other hand, we often hope the decoder to take pieces of source sentence at varying levels suiting its own linguistic structure: for example, we may want to take the entity name in its raw form while taking an idiom as a perfectly composed unit. Motivated by this demand, we propose Multi-channel Encoder (MCE), which enhances encoding components with different levels of composition. More specifically, in addition to the hidden state of encoding RNN, MCE takes 1) the original word embedding for raw encoding with no composition, and 2) a particular design of external memory in Neural Turing Machine (NTM) for more complex composition, while all three encoding strategies are properly blended during decoding. Empirical study on Chinese-English translation shows that our model can improve by 6.52 BLEU points upon a strong open source NMT system: DL4MT1. On the WMT14 English- French task, our single shallow system achieves BLEU=38.8, comparable with the state-of-the-art deep models.
In this paper, we propose a novel finetuning algorithm for the recently introduced multi-way, mulitlingual neural machine translate that enables zero-resource machine translation. When used together with novel many-to-one translation strategies, we e mpirically show that this finetuning algorithm allows the multi-way, multilingual model to translate a zero-resource language pair (1) as well as a single-pair neural translation model trained with up to 1M direct parallel sentences of the same language pair and (2) better than pivot-based translation strategy, while keeping only one additional copy of attention-related parameters.
Current state-of-the-art NMT systems use large neural networks that are not only slow to train, but also often require many heuristics and optimization tricks, such as specialized learning rate schedules and large batch sizes. This is undesirable as it requires extensive hyperparameter tuning. In this paper, we propose a curriculum learning framework for NMT that reduces training time, reduces the need for specialized heuristics or large batch sizes, and results in overall better performance. Our framework consists of a principled way of deciding which training samples are shown to the model at different times during training, based on the estimated difficulty of a sample and the current competence of the model. Filtering training samples in this manner prevents the model from getting stuck in bad local optima, making it converge faster and reach a better solution than the common approach of uniformly sampling training examples. Furthermore, the proposed method can be easily applied to existing NMT models by simply modifying their input data pipelines. We show that our framework can help improve the training time and the performance of both recurrent neural network models and Transformers, achieving up to a 70% decrease in training time, while at the same time obtaining accuracy improvements of up to 2.2 BLEU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا