ترغب بنشر مسار تعليمي؟ اضغط هنا

GJ357: A low-mass planetary system uncovered by precision radial-velocities and dynamical simulations

79   0   0.0 ( 0 )
 نشر من قبل James Jenkins Prof
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a new planetary system orbiting the nearby M2.5V star GJ357, using precision radial-velocities from three separate echelle spectrographs, HARPS, HiRES, and UVES. Three small planets have been confirmed in the system, with periods of 9.125+/-0.001, 3.9306+/-0.0003, and 55.70+/-0.05 days, and minimum masses of 3.33+/-0.48, 2.09+/-0.32, and 6.72+/-0.94 Me, respectively. The second planet in our system, GJ357c, was recently shown to transit by the Transiting Exoplanet Survey Satellite (TESS; Luque et al. 2019), but we could find no transit signatures for the other two planets. Dynamical analysis reveals the system is likely to be close to coplanar, is stable on Myrs timescales, and places strong upper limits on the masses of the two non-transiting planets b and d of 4.25 and 11.20 Me, respectively. Therefore, we confirm the system contains at least two super-Earths, and either a third super-Earth or mini-Neptune planet. GJ357b & c are found to be close to a 7:3 mean motion resonance, however no libration of the orbital parameters was found in our simulations. Analysis of the photometric lightcurve of the star from the TESS, when combined with our radial-velocities, reveal GJ357c has an absolute mass, radius, and density of 2.248+0.117-0.120 Me, 1.167+0.037-0.036 Re, and 7.757+0.889-0.789 g/cm3, respectively. Comparison to super-Earth structure models reveals the planet is likely an iron dominated world. The GJ357 system adds to the small sample of low-mass planetary systems with well constrained masses, and further observational and dynamical follow-up is warranted to better understand the overall population of small multi-planet systems in the solar neighbourhood.



قيم البحث

اقرأ أيضاً

Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared rad ial velocity techniques. We present our methodology for achieving 58 m/s precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3-meter NASA IRTF. We also demonstrate our ability to recover the known 4 Mjup exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.
We report precise radial velocity (RV) measurements of WASP-47, a G star that hosts three transiting planets in close proximity (a hot Jupiter, a super-Earth and a Neptune-sized planet) and a non-transiting planet at 1.4 AU. Through a joint analysis of previously published RVs and our own Keck-HIRES RVs, we significantly improve the planet mass and bulk density measurements. For the super-Earth WASP-47e ($P$ = 0.79 days), we measure a mass of 9.11 $pm$ 1.17 $M_oplus$, and a bulk density of 7.63 $pm$ 1.90 g cm$^{-3}$, consistent with a rocky composition. For the hot Jupiter WASP-47b ($P$ = 4.2 days), we measure a mass of 356 $pm$ 12 $M_oplus$ (1.12 $pm$ 0.04 $M_rm{Jup}$) and constrain its eccentricity to $<0.021$ at 3-$sigma$ confidence. For the Neptune-size planet WASP-47d ($P$ = 9.0 days), we measure a mass of 12.75 $pm$ 2.70 $M_oplus$, and a bulk density of 1.36 $pm$ 0.42 g cm$^{-3}$, suggesting it has a thick H/He envelope. For the outer non-transiting planet, we measure a minimum mass of 411 $pm$ 18 $M_oplus$ (1.29 $pm$ 0.06 $M_rm{Jup}$), an orbital period of 595.7 $pm$ 5.0 days, and an orbital eccentricity of 0.27 $pm$ 0.04. Our new measurements are consistent with but 2$-$4$times$ more precise than previous mass measurements.
Transit timing variations of Kepler-410Ab were already reported in a few papers. Their semi-amplitude is about 14.5 minutes. In our previous paper, we found that the transit timing variations could be caused by the presence of a stellar companion in this system. Our main motivation for this paper was to investigate variation in a radial-velocity curve generated by this additional star in the system. We performed spectroscopic observation of Kepler-410 using three telescopes in Slovakia and Czech Republic. Using the cross-correlation function, we measured the radial velocities of the star Kepler-410A. We did not observe any periodic variation in a radial-velocity curve. Therefore, we rejected our previous hypothesis about additional stellar companion in the Kepler-410 system. We ran different numerical simulations to study mean-motion resonances with Kepler-410Ab. Observed transit timing variations could be also explained by the presence of a small planet near to mean-motion resonance 2:3 with Kepler-410Ab. This resonance is stable on a long-time scale. We also looked for stable regions in the Kepler-410 system where another planet could exist for a long time.
Variations related to stellar activity and correlated noise can prevent the detections of low-amplitude signals in radial velocity data if not accounted for. This can be seen as the greatest obstacle in detecting Earth-like planets orbiting nearby st ars with Doppler spectroscopy regardless of developments in instrumentation and rapidly accumulating amounts of data. We use a statistical model that is not sensitive to aperiodic and/or quasiperiodic variability of stellar origin. We demonstrate the performance of our model by re-analysing the radial velocities of the moderately active star CoRoT-7 ($log R_{rm HK} = -4.61$) with a transiting planet whose Doppler signal has proven rather difficult to detect. We find that the signal of the transiting planet can be robustly detected together with signals of two other planet candidates. Our results suggest that rotation periods of moderately active stars can be filtered out of the radial velocity noise, which enables the detections of low-mass planets orbiting such stars.
241 - I. Carleo , N. Sanna , R. Gratton 2016
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANOs capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H -magnitudes: for H ~ 5 we obtain an rms scatter of ~ 10 m s-1, while for H ~ 9 the standard deviation increases to ~ 50 - 80 m s-1. The corresponding theoretical error expectations are ~4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا