ﻻ يوجد ملخص باللغة العربية
Spectre attacks disclosed in early 2018 expose data leakage scenarios via cache side channels. Specifically, speculatively executed paths due to branch mis-prediction may bring secret data into the cache which are then exposed via cache side channels even after the speculative execution is squashed. Symbolic execution is a well-known test generation method to cover program paths at the level of the application software. In this paper, we extend symbolic execution with modelingof cache and speculative execution. Our tool KLEESPECTRE, built on top of the KLEE symbolic execution engine, can thus provide a testing engine to check for the data leakage through cache side-channel as shown via Spectre attacks. Our symbolic cache model can verify whether the sensitive data leakage due to speculative execution can be observed by an attacker at a given program point. Our experiments show that KLEESPECTREcan effectively detect data leakage along speculatively executed paths and our cache model can further make the leakage detection much more precise.
CPU cache is a limited but crucial storage component in modern processors, whereas the cache timing side-channel may inadvertently leak information through the physically measurable timing variance. Speculative execution, an essential processor optim
Modern processors use branch prediction and speculative execution to maximize performance. For example, if the destination of a branch depends on a memory value that is in the process of being read, CPUs will try guess the destination and attempt to
The timing characteristics of cache, a high-speed storage between the fast CPU and the slowmemory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks
Spectre, Meltdown, and related attacks have demonstrated that kernels, hypervisors, trusted execution environments, and browsers are prone to information disclosure through micro-architectural weaknesses. However, it remains unclear as to what extent
Existing speculative execution attacks are limited to breaching confidentiality of data beyond privilege boundary, the so-called spectre-type attacks. All of them utilize the changes in microarchitectural buffers made by the speculative execution to