ﻻ يوجد ملخص باللغة العربية
This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body. We address some hotly debated questions including: - How do core and mantle affect the evolution and habitability of planets? - What are the consequences of mantle overturn on the evolution of the interior and atmosphere? - What is the role of the global carbon and water cycles? - What influence do comet and asteroid impacts exert on the evolution of the planet? - How does life interact with the evolution of the Earths geosphere and atmosphere? - How can knowledge of the solar system geophysics and habitability be applied to exoplanets? In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.
There is a vibrant and effective planetary science community in Canada. We do research in the areas of meteoritics, asteroid and trans-Neptunian object orbits and compositions, and space weather, and are involved in space probe missions to study plan
For the first time in human history, we will soon be able to apply the scientific method to the question Are We Alone? The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search
The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA s
The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently,
We present the first investigation of Th abundances in Solar twins and analogues to understand the possible range of this radioactive element and its effect on rocky planet interior dynamics and potential habitability. The abundances of the radioacti