ﻻ يوجد ملخص باللغة العربية
MAGIC is a system of two Cherenkov telescopes located in the Canary island of La Palma. A key part of MAGIC Fundamental Physics program is the search for indirect signals of Dark Matter (DM) from different sources. In the Milky Way, DM forms an almost spherically symmetric halo, with a density peaked towards the center of the Galaxy and decreasing toward the outer region. We search for DM decay signals from the Galactic Halo, with a special methodology developed for this work. Our strategy is to compare pairs of observations performed at different angular distances from the Galactic Center, selected in such a way that all the diffuse components cancel out, except for those coming from the DM. In order to keep the systematic uncertainty of this novel background estimation method down to a minimum, the observation pairs have been acquired during the same nights and follow exactly the same azimuth and zenith paths. We collected 20 hours of data during 2018. Using half of them to determine the systematic uncertainty in the background estimation of our analysis, we obtain a value of 4.8% with no dependence on energy. Accounting for this systematic uncertainty in the likelihood analysis based on the 10 remaining hours of data collected so far, we present the limit to TeV DM particle with a lifetime of $10^{26}$ s in the $mathrm{bbar{b}}$ decay channel.
We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 hours of good-quality data taken between August 2016 and August 2017. We find no gamma-ray e
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a
Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detec
A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectr
Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy $gamma$-rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximit