ﻻ يوجد ملخص باللغة العربية
In a prior paper the authors obtained a four-dimensional discrete integrable dynamical system by the traveling wave reduction from the lattice super-KdV equation in a case of finitely generated Grassmann algebra. The system is a coupling of a Quispel-Roberts-Thompson map and a linear map but does not satisfy the singularity confinement criterion. It was conjectured that the dynamical degree of this system grows quadratically. In this paper, constructing a rational variety where the system is lifted to an algebraically stable map and using the action of the map on the Picard lattice, we prove this conjecture. We also show that invariants can be found through the same technique.
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three peri
We characterize a stochastic dynamical system with tempered stable noise, by examining its probability density evolution. This probability density function satisfies a nonlocal Fokker-Planck equation. First, we prove a superposition principle that th
The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete so
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case,
This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonho