ترغب بنشر مسار تعليمي؟ اضغط هنا

Discontinuous Galerkin discretization for quantum simulation of chemistry

125   0   0.0 ( 0 )
 نشر من قبل Jarrod McClean
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methods for electronic structure based on Gaussian and molecular orbital discretizations offer a well established, compact representation that forms much of the foundation of correlated quantum chemistry calculations on both classical and quantum computers. Despite their ability to describe essential physics with relatively few basis functions, these representations can suffer from a quartic growth of the number of integrals. Recent results have shown that, for some quantum and classical algorithms, moving to representations with diagonal two-body operators can result in dramatically lower asymptotic costs, even if the number of functions required increases significantly. We introduce a way to interpolate between the two regimes in a systematic and controllable manner, such that the number of functions is minimized while maintaining a block diagonal structure of the two-body operator and desirable properties of an original, primitive basis. Techniques are analyzed for leveraging the structure of this new representation on quantum computers. Empirical results for hydrogen chains suggest a scaling improvement from $O(N^{4.5})$ in molecular orbital representations to $O(N^{2.6})$ in our representation for quantum evolution in a fault-tolerant setting, and exhibit a constant factor crossover at 15 to 20 atoms. Moreover, we test these methods using modern density matrix renormalization group methods classically, and achieve excellent accuracy with respect to the complete basis set limit with a speedup of 1-2 orders of magnitude with respect to using the primitive or Gaussian basis sets alone. These results suggest our representation provides significant cost reductions while maintaining accuracy relative to molecular orbital or strictly diagonal approaches for modest-sized systems in both classical and quantum computation for correlated systems.



قيم البحث

اقرأ أيضاً

Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe stro ng correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mi tigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
As quantum computing hardware systems continue to advance, the research and development of performant, scalable, and extensible software architectures, languages, models, and compilers is equally as important in order to bring this novel coprocessing capability to a diverse group of domain computational scientists. For the field of quantum chemistry, applications and frameworks exists for modeling and simulation tasks that scale on heterogeneous classical architectures, and we envision the need for similar frameworks on heterogeneous quantum-classical platforms. Here we present the XACC system-level quantum computing framework as a platform for prototyping, developing, and deploying quantum-classical software that specifically targets chemistry applications. We review the fundamental design features in XACC, with special attention to its extensibility and modularity for key quantum programming workflow interfaces, and provide an overview of the interfaces most relevant to simulations of chemistry. A series of examples demonstrating some of the state-of-the-art chemistry algorithms currently implemented in XACC are presented, while also illustrating the various APIs that would enable the community to extend, modify, and devise new algorithms and applications in the realm of chemistry.
Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techni ques to larger molecules might be infeasible. We present a measurement strategy based on a low rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling non-local Jordan-Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground state energies of strongly correlated electronic systems.
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hy drogen and lithium dimers, comparable to simulations requiring twenty or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا