ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Foundations of the Universe with Space Tests of the Equivalence Principle

84   0   0.0 ( 0 )
 نشر من قبل Andrea Bertoldi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the scientific motivation for future space tests of the equivalence principle, and in particular the universality of free fall, at the $10^{-17}$ level or better. Two possible mission scenarios, one based on quantum technologies, the other on electrostatic accelerometers, that could reach that goal are briefly discussed.



قيم البحث

اقرأ أيضاً

We present in detail the scientific objectives in fundamental physics of the Space-Time Explorer and QUantum Equivalence Space Test (STE-QUEST) space mission. STE-QUEST was pre-selected by the European Space Agency together with four other missions f or the cosmic vision M3 launch opportunity planned around 2024. It carries out tests of different aspects of the Einstein Equivalence Principle using atomic clocks, matter wave interferometry and long distance time/frequency links, providing fascinating science at the interface between quantum mechanics and gravitation that cannot be achieved, at that level of precision, in ground experiments. We especially emphasize the specific strong interest of performing equivalence principle tests in the quantum regime, i.e. using quantum atomic wave interferometry. Although STE-QUEST was finally not selected in early 2014 because of budgetary and technological reasons, its science case was very highly rated. Our aim is to expose that science to a large audience in order to allow future projects and proposals to take advantage of the STE-QUEST experience.
137 - Albert Roura 2015
Atom interferometry tests of universality of free fall based on the differential measurement of two different atomic species provide a useful complement to those based on macroscopic masses. However, when striving for the highest possible sensitiviti es, gravity gradients pose a serious challenge. Indeed, the relative initial position and velocity for the two species need to be controlled with extremely high accuracy, which can be rather demanding in practice and whose verification may require rather long integration times. Furthermore, in highly sensitive configurations gravity gradients lead to a drastic loss of contrast. These difficulties can be mitigated by employing wave packets with narrower position and momentum widths, but this is ultimately limited by Heisenbergs uncertainty principle. We present a novel scheme that simultaneously overcomes the loss of contrast and the initial co-location problem. In doing so, it circumvents the fundamental limitations due to Heisenbergs uncertainty principle and eases the experimental realization by relaxing the requirements on initial co-location by several orders of magnitude.
We briefly summarize motivations for testing the weak equivalence principle and then review recent torsion-balance results that compare the differential accelerations of beryllium-aluminum and beryllium-titanium test body pairs with precisions at the part in $10^{13}$ level. We discuss some implications of these results for the gravitational properties of antimatter and dark matter, and speculate about the prospects for further improvements in experimental sensitivity.
The Lunar Laser Ranging (LLR) experiment provides precise observations of the lunar orbit that contribute to a wide range of science investigations. In particular, time series of highly accurate measurements of the distance between the Earth and Moon provide unique information that determine whether, in accordance with the Equivalence Principle (EP), both of these celestial bodies are falling towards the Sun at the same rate, despite their different masses, compositions, and gravitational self-energies. Analyses of precise laser ranges to the Moon continue to provide increasingly stringent limits on any violation of the EP. Current LLR solutions give (-0.8 +/- 1.3) x 10^{-13} for any possible inequality in the ratios of the gravitational and inertial masses for the Earth and Moon, (m_G/m_I)_E - (m_G/m_I)_M. Such an accurate result allows other tests of gravitational theories. Focusing on the tests of the EP, we discuss the existing data and data analysis techniques. The robustness of the LLR solutions is demonstrated with several different approaches to solutions. Additional high accuracy ranges and improvements in the LLR data analysis model will further advance the research of relativistic gravity in the solar system, and will continue to provide highly accurate tests of the Equivalence Principle.
The validity of General Relativity, after 100 years, is supported by solid experimental evidence. However, there is a lot of interest in pushing the limits of precision by other experiments. Here we focus our attention on the equivalence principle, i n particular the strong form. The results of ground experiments and lunar laser ranging have provided the best upper limit on the Nordtvedt parameter {eta} that models deviations from the strong equivalence principle. Its uncertainty is currently {sigma}[{eta}] =4.4 $times$ $10^{-4}$. In the first part of this paper we will describe the experiment, to measure {eta}, that will be done by the future mission BepiColombo. The expected precision on {eta} is $approx$ $10^{-5}$. In the second part we will consider the ranging between the Earth and a spacecraft orbiting near the Sun-Earth Lagrangian points to get an independent measurement of {eta}. In this case, we forecast a constraint similar to that achieved by lunar laser ranging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا