ترغب بنشر مسار تعليمي؟ اضغط هنا

An Ultra-Efficient Memristor-Based DNN Framework with Structured Weight Pruning and Quantization Using ADMM

120   0   0.0 ( 0 )
 نشر من قبل Geng Yuan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The high computation and memory storage of large deep neural networks (DNNs) models pose intensive challenges to the conventional Von-Neumann architecture, incurring substantial data movements in the memory hierarchy. The memristor crossbar array has emerged as a promising solution to mitigate the challenges and enable low-power acceleration of DNNs. Memristor-based weight pruning and weight quantization have been seperately investigated and proven effectiveness in reducing area and power consumption compared to the original DNN model. However, there has been no systematic investigation of memristor-based neuromorphic computing (NC) systems considering both weight pruning and weight quantization. In this paper, we propose an unified and systematic memristor-based framework considering both structured weight pruning and weight quantization by incorporating alternating direction method of multipliers (ADMM) into DNNs training. We consider hardware constraints such as crossbar blocks pruning, conductance range, and mismatch between weight value and real devices, to achieve high accuracy and low power and small area footprint. Our framework is mainly integrated by three steps, i.e., memristor-based ADMM regularized optimization, masked mapping and retraining. Experimental results show that our proposed framework achieves 29.81X (20.88X) weight compression ratio, with 98.38% (96.96%) and 98.29% (97.47%) power and area reduction on VGG-16 (ResNet-18) network where only have 0.5% (0.76%) accuracy loss, compared to the original DNN models. We share our models at link http://bit.ly/2Jp5LHJ.



قيم البحث

اقرأ أيضاً

Many model compression techniques of Deep Neural Networks (DNNs) have been investigated, including weight pruning, weight clustering and quantization, etc. Weight pruning leverages the redundancy in the number of weights in DNNs, while weight cluster ing/quantization leverages the redundancy in the number of bit representations of weights. They can be effectively combined in order to exploit the maximum degree of redundancy. However, there lacks a systematic investigation in literature towards this direction. In this paper, we fill this void and develop a unified, systematic framework of DNN weight pruning and clustering/quantization using Alternating Direction Method of Multipliers (ADMM), a powerful technique in optimization theory to deal with non-convex optimization problems. Both DNN weight pruning and clustering/quantization, as well as their combinations, can be solved in a unified manner. For further performance improvement in this framework, we adopt multiple techniques including iterative weight quantization and retraining, joint weight clustering training and centroid updating, weight clustering retraining, etc. The proposed framework achieves significant improvements both in individual weight pruning and clustering/quantization problems, as well as their combinations. For weight pruning alone, we achieve 167x weight reduction in LeNet-5, 24.7x in AlexNet, and 23.4x in VGGNet, without any accuracy loss. For the combination of DNN weight pruning and clustering/quantization, we achieve 1,910x and 210x storage reduction of weight data on LeNet-5 and AlexNet, respectively, without accuracy loss. Our codes and models are released at the link http://bit.ly/2D3F0np
Weight pruning and weight quantization are two important categories of DNN model compression. Prior work on these techniques are mainly based on heuristics. A recent work developed a systematic frame-work of DNN weight pruning using the advanced opti mization technique ADMM (Alternating Direction Methods of Multipliers), achieving one of state-of-art in weight pruning results. In this work, we first extend such one-shot ADMM-based framework to guarantee solution feasibility and provide fast convergence rate, and generalize to weight quantization as well. We have further developed a multi-step, progressive DNN weight pruning and quantization framework, with dual benefits of (i) achieving further weight pruning/quantization thanks to the special property of ADMM regularization, and (ii) reducing the search space within each step. Extensive experimental results demonstrate the superior performance compared with prior work. Some highlights: (i) we achieve 246x,36x, and 8x weight pruning on LeNet-5, AlexNet, and ResNet-50 models, respectively, with (almost) zero accuracy loss; (ii) even a significant 61x weight pruning in AlexNet (ImageNet) results in only minor degradation in actual accuracy compared with prior work; (iii) we are among the first to derive notable weight pruning results for ResNet and MobileNet models; (iv) we derive the first lossless, fully binarized (for all layers) LeNet-5 for MNIST and VGG-16 for CIFAR-10; and (v) we derive the first fully binarized (for all layers) ResNet for ImageNet with reasonable accuracy loss.
Memristor crossbars are circuits capable of performing analog matrix-vector multiplications, overcoming the fundamental energy efficiency limitations of digital logic. They have been shown to be effective in special-purpose accelerators for a limited set of neural network applications. We present the Programmable Ultra-efficient Memristor-based Accelerator (PUMA) which enhances memristor crossbars with general purpose execution units to enable the acceleration of a wide variety of Machine Learning (ML) inference workloads. PUMAs microarchitecture techniques exposed through a specialized Instruction Set Architecture (ISA) retain the efficiency of in-memory computing and analog circuitry, without compromising programmability. We also present the PUMA compiler which translates high-level code to PUMA ISA. The compiler partitions the computational graph and optimizes instruction scheduling and register allocation to generate code for large and complex workloads to run on thousands of spatial cores. We have developed a detailed architecture simulator that incorporates the functionality, timing, and power models of PUMAs components to evaluate performance and energy consumption. A PUMA accelerator running at 1 GHz can reach area and power efficiency of $577~GOPS/s/mm^2$ and $837~GOPS/s/W$, respectively. Our evaluation of diverse ML applications from image recognition, machine translation, and language modelling (5M-800M synapses) shows that PUMA achieves up to $2,446times$ energy and $66times$ latency improvement for inference compared to state-of-the-art GPUs. Compared to an application-specific memristor-based accelerator, PUMA incurs small energy overheads at similar inference latency and added programmability.
Weight pruning methods for deep neural networks (DNNs) have been investigated recently, but prior work in this area is mainly heuristic, iterative pruning, thereby lacking guarantees on the weight reduction ratio and convergence time. To mitigate the se limitations, we present a systematic weight pruning framework of DNNs using the alternating direction method of multipliers (ADMM). We first formulate the weight pruning problem of DNNs as a nonconvex optimization problem with combinatorial constraints specifying the sparsity requirements, and then adopt the ADMM framework for systematic weight pruning. By using ADMM, the original nonconvex optimization problem is decomposed into two subproblems that are solved iteratively. One of these subproblems can be solved using stochastic gradient descent, the other can be solved analytically. Besides, our method achieves a fast convergence rate. The weight pruning results are very promising and consistently outperform the prior work. On the LeNet-5 model for the MNIST data set, we achieve 71.2 times weight reduction without accuracy loss. On the AlexNet model for the ImageNet data set, we achieve 21 times weight reduction without accuracy loss. When we focus on the convolutional layer pruning for computation reductions, we can reduce the total computation by five times compared with the prior work (achieving a total of 13.4 times weight reduction in convolutional layers). Our models and codes are released at https://github.com/KaiqiZhang/admm-pruning
Memristors have recently received significant attention as ubiquitous device-level components for building a novel generation of computing systems. These devices have many promising features, such as non-volatility, low power consumption, high densit y, and excellent scalability. The ability to control and modify biasing voltages at the two terminals of memristors make them promising candidates to perform matrix-vector multiplications and solve systems of linear equations. In this article, we discuss how networks of memristors arranged in crossbar arrays can be used for efficiently solving optimization and machine learning problems. We introduce a new memristor-based optimization framework that combines the computational merit of memristor crossbars with the advantages of an operator splitting method, alternating direction method of multipliers (ADMM). Here, ADMM helps in splitting a complex optimization problem into subproblems that involve the solution of systems of linear equations. The capability of this framework is shown by applying it to linear programming, quadratic programming, and sparse optimization. In addition to ADMM, implementation of a customized power iteration (PI) method for eigenvalue/eigenvector computation using memristor crossbars is discussed. The memristor-based PI method can further be applied to principal component analysis (PCA). The use of memristor crossbars yields a significant speed-up in computation, and thus, we believe, has the potential to advance optimization and machine learning research in artificial intelligence (AI).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا