ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced suppression of charge density wave and emergence of Superconductivity in 1T-VSe2

90   0   0.0 ( 0 )
 نشر من قبل Sukanta Karmakar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report pressure evolution of charge density wave (CDW) order and emergence of superconductivity (SC) in 1T-VSe2 single crystal by studying resistance and magnetoresistance behavior under high pressure. With increasing quasi-hydrostatic pressure the CDW order enhances with increase ofthe ordering temperature up to 240K at 12 GPa. Upon further increase of pressure, the resistance anomaly due to CDW order gets suppressed drastically and superconductivity emerges at ~15 GPa, with the onset critical temperature (Tc) ~ 4K. The pressure dependence of Tc is found negligible, different from the significant increase or a dome-shape seen in iso-structural layered diselenide superconductors. The high pressure magnetoresistance and Hall measurements suggest successive electronic structural changes with Fermi surface modifications at 6 GPa and 12GPa. From the observed negative magnetoresistance in this pressure range and absence of coexisting CDW and SC phases, we propose that intra-layer spin-fluctuation can play a role in the emergence of superconductivity in the high pressure phase.



قيم البحث

اقرأ أيضاً

We present a state-of-the-art x-ray diffraction study of the charge density wave order in 1T-TaS2 as a function of temperature and pressure. Our results prove that the charge density wave, which we characterize in terms of wave vector, amplitude and the coherence length, indeed exists in the superconducting region of the phase diagram. The data further imply that the ordered charge density wave structure as a whole becomes superconducting at low temperatures, i. e, superconductivity and charge density wave coexist on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space and, instead, provides evidence that the superconducting and the charge density wave gap exist in separate regions of reciprocal space.
We investigated the effect of application of hydrostatic pressure on the charge-density wave (CDW) state in Lu(Pt$_{1-x}$Pd$_x$)$_2$In by electrical-resistivity measurements. In Lu(Pt$_{0.7}$Pd$_{0.3}$)$_{2}$In we find an increase of the CDW transiti on temperature upon application of pressure, which is not expected based on simple volume arguments, but in line with results of a theoretical work by Kim et al. [Phys. Rev. Lett. 125, 157001 (2020).]. Combining experimental and theoretical results suggests the existence of a CDW quantum critical point in stoichiometric LuPd$_2$In around $papprox20$ GPa.
317 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M ott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
Understanding the complexities of electronic and magnetic ground states in solids is one of the main goals of solid-state physics. Materials with the canonical ThCr$_2$Si$_2$-type structure have proved particularly fruitful in this regards, as they e xhibit a wide range of technologically advantageous physical properties described by many-body physics, including high-temperature superconductivity and heavy fermion behavior. Here, using high-resolution synchrotron X-ray diffraction and time-of-flight neutron scattering, we show that the isostructural mixed valence compound, KNi$_2$S$_2$, displays a number of highly unusual structural transitions, most notably the presence of charge density wave fluctuations that disappear on cooling. This behavior occurs without magnetic or charge order, in contrast to expectations based on all other known materials. Furthermore, the low-temperature electronic state of KNi$_2$S$_2$ is found to exhibit many characteristics of heavy-fermion behavior, including a heavy electron state ($m^*/m_e sim$ 24), with a negative coefficient of thermal expansion, and superconductivity below $T_c$ = 0.46(2) K. In the potassium nickel sulfide, these behaviors arise in the absence of localized magnetism, and instead appear to originate in proximity to charge order.
A number of spectacular experimental anomaliescite{li-2007,fujita-2005} have recently been discovered in certain cuprates, notably {LBCO} and {LNSCO}, which exhibit unidirectional spin and charge order (known as ``stripe order). We have recently prop osed to interpret these observations as evidence for a novel ``striped superconducting state, in which the superconducting order parameter is modulated in space, such that its average is precisely zero. Here, we show that thermal melting of the striped superconducting state can lead to a number of unusual phases, of which the most novel is a charge $4e$ superconducting state, with a corresponding fractional flux quantum $hc/4e$. These are never-before observed states of matter, and ones, moreover, that cannot arise from the conventional Bardeen-Cooper-Schrieffer (BCS) mechanism. Thus, direct confirmation of their existence, even in a small subset of the cuprates, could have much broader implications for our understanding of high temperature superconductivity. We propose experiments to observe fractional flux quantization, which thereby could confirm the existence of these states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا