ﻻ يوجد ملخص باللغة العربية
The stochastic and dynamic nature of renewable energy sources and power electronic devices are creating unique challenges for modern power systems. One such challenge is that the conventional mathematical systems models-based optimal active power dispatch (OAPD) method is limited in its ability to handle uncertainties caused by renewables and other system contingencies. In this paper, a deep reinforcement learning-based (DRL) method is presented to provide a near-optimal solution to the OAPD problem without system modeling. The DRL agent undergoes offline training, based on which, it is able to obtain the OAPD points under unseen scenarios, e.g., different load patterns. The DRL-based OAPD method is tested on the IEEE 14-bus system, thereby validating its feasibility to solve the OAPD problem. Its utility is further confirmed in that it can be leveraged as a key component for solving future model-free AC-OPF problems.
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a sophisticated three-dimensional (3D) environment, where the UAVs trajectory is optimized to efficiently collect data from multiple IoT ground
Vehicular edge computing (VEC) is envisioned as a promising approach to process the explosive computation tasks of vehicular user (VU). In the VEC system, each VU allocates power to process partial tasks through offloading and the remaining tasks thr
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and often delivering limited performance. I
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access (RSMA) network. In the network, messages intended for users are split into different parts that are a single common part and respe
With the mass deployment of computing-intensive applications and delay-sensitive applications on end devices, only adequate computing resources can meet differentiated services delay requirements. By offloading tasks to cloud servers or edge servers,