ﻻ يوجد ملخص باللغة العربية
The operator in a parton shower algorithm that represents the imaginary part of virtual Feynman graphs has a non-trivial color structure and is large because it is proportional to a factor of $4pi$. In order to improve the treatment of color in a parton shower, it may help to exponentiate this phase operator. We show that it is possible to do so by exponentiating matrices that are no larger than $14times14$. Using the example of the probability to have a gap in the rapidity interval between two high transverse momentum jets, we test this exponentiation algorithm by comparing to the result of treating the phase operator perturbatively. We find that the exponentiation works, but that the net effect of the exponentiated phase operator is quite small for this problem, so that one can as well use the perturbative approach.
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to t
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties tr
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of $1/N_c^2$, where $N_c = 3$ is the num
We present algorithms that interleave photon radiation from the final state and the initial state with the QCD evolution in the antenna-based Vincia parton shower. One of the algorithms incorporates the complete soft and collinear structure associate
We present the Higgs Characterisation (HC) framework to study the properties of the Higgs boson observed at 125 GeV. In this report, we focus on CP properties of the top-quark Yukawa interaction, and show predictions at next-to-leading order accuracy