ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the mid-infrared SEDs of six AGN dusty torus models II: the data

185   0   0.0 ( 0 )
 نشر من قبل Omaira Gonz\\'alez-Mart\\'in
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second in a series of papers devoted to explore a set of six dusty models of active galactic nuclei (AGN) with available spectral energy distributions (SEDs). These models are the smooth torus by Fritz et al. (2006), the clumpy torus by Nenkova et al. (2008B), the clumpy torus by Hoenig & Kishimoto (2010), the two phase torus by Siebenmorgen et al. (2015), the two phase torus by Stalevski et al. (2016), and the wind model by Hoenig & Kishimoto (2017). The first paper explores discrimination among models and the parameter restriction using synthetic spectra (Gonzalez-Martin et al. 2019A). Here we perform spectral fitting of a sample of 110 AGN drawn from the Swift/BAT survey with Spitzer/IRS spectroscopic data. The aim is to explore which is the model that describes better the data and the resulting parameters. The clumpy wind-disk model by Hoenig & Kishimoto (2017) provides good fits for ~50% of the sample, and the clumpy torus model by Nenkova et al. (2008B) is good at describing ~30% of the objects. The wind-disk model by Hoenig & Kishimoto (2017) is better for reproducing the mid-infrared spectra of Type-1 Seyferts while Type-2 Seyferts are equally fitted by both models. Large residuals are found irrespective of the model used, indicating that the AGN dust continuum emission is more complex than predicted by the models or that the parameter space is not well sampled. We found that all the resulting parameters for our AGN sample are roughly constrained to 10-20% of the parameter space. The derived outer radius of the torus is smaller for the smooth torus by Fritz et al. (2006) and the two phase torus by Stalevski et al. (2016) than the one derived from the clumpy torus by (Nenkova et al. 2008B). Covering factors and line-of-sight viewing angles strongly depend on the model used. The total dust mass is the most robust derived quantity.



قيم البحث

اقرأ أيضاً

At distances from the active galaxy nucleus (AGN) where the ambient temperature falls below ~1500-1800 K, dust is able to survive. It is thus possible to have a large dusty structure present which surrounds the AGN. This is the first of two papers ai ming at comparing six dusty torus models with available SEDs, namely Fritz et al. (2006), Nenkova et al. (2008B), Hoenig & Kishimoto (2010), Siebenmorgen et al. (2015), Stalevski et al. (2016), and Hoenig & Kishimoto (2017). In this first paper we use synthetic spectra to explore the discrimination between these models and under which circumstances they allow to restrict the torus parameters, while our second paper analyzes the best model to describe the mid-infrared spectroscopic data. We have produced synthetic spectra from current instruments: GTC/CanariCam and Spitzer /IRS and future JWST/MIRI and JWST/NIRSpec instruments. We find that for a reasonable brightness (F12um > 100mJy) we can actually distinguish among models except for the two pair of parent models. We show that these models can be distinguished based on the continuum slopes and the strength of the silicate features. Moreover, their parameters can be constrained within 15% of error, irrespective of the instrument used, for all the models but Hoenig & Kishimoto (2017). However, the parameter estimates are ruined when more than 50% of circumnuclear contributors are included. Therefore, future high spatial resolution spectra as those expected from JWST will provide enough coverage and spatial resolution to tackle this topic.
163 - Mark Lacy 2015
We present luminosity functions derived from a spectroscopic survey of AGN selected from Spitzer Space Telescope imaging surveys. Selection in the mid-infrared is significantly less affected by dust obscuration. We can thus compare the luminosity fun ctions of the obscured and unobscured AGN in a more reliable fashion than by using optical or X-ray data alone. We find that the AGN luminosity function can be well described by a broken power-law model in which the break luminosity decreases with redshift. At high redshifts ($z>1.6$), we find significantly more AGN at a given bolometric luminosity than found by either optical quasar surveys or hard X-ray surveys. The fraction of obscured AGN decreases rapidly with increasing AGN luminosity, but, at least at high redshifts, appears to remain at $approx 50$% even at bolometric luminosities $sim 10^{14}L_{odot}$. The data support a picture in which the obscured and unobscured populations evolve differently, with some evidence that high luminosity obscured quasars peak in space density at a higher redshift than their unobscured counterparts. The amount of accretion energy in the Universe estimated from this work suggests that AGN contribute about 12% to the total radiation intensity of the Universe, and a high radiative accretion efficiency $approx 0.18^{+0.12}_{-0.07}$ is required to match current estimates of the local mass density in black holes.
Context: We investigate mid-infrared and X-ray properties of the dusty torus invoked in the unification scenario for active galactic nuclei. Aims: We use the relation between mid IR and hard X-ray luminosities to constrain the geometry and physical state of the dusty torus. Methods: We present new VISIR observations of 17 nearby AGN and combine these with our earlier VISIR sample of 8 Seyfert galaxies. Combining these observations with X-ray data from the literature we study the correlation between their mid IR and hard X-ray luminosities. Results: A statistically highly significant correlation between the rest frame 12.3 mircon (L_MIR) and 2-10 keV (L_X) luminosities is found. Furthermore, with a probability of 97%, we find that Sy 1 and Sy 2 have the same distribution of L_MIR over L_X. Conclusions: The high resolution of our MIR imaging allows us to exclude any significant non-torus contribution to the AGN mid IR continuum,thereby implying that the similarity in the L_MIR / L_X ratio between Sy 1s and Sy 2s is intrinsic to AGN. We argue that this is best explained by clumpy torus models. The slope of the correlation is in good agreement with the expectations from the unified scenario and indicates little to no change of the torus geometry with luminosity. In addition, we demonstrate that the high angular resolution is crucial for AGN studies in the IR regime.
122 - D. Asmus , P. Gandhi , S.F. Hoenig 2015
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.
We continue our study of the spectral energy distributions (SEDs) of 11 AGN at 1.5 < z < 2.2, with optical-NIR spectra, X-ray data and mid-IR photometry. In a previous paper we presented the observations and models; in this paper we explore the param eter space of these models. We first quantify uncertainties on the black hole masses (M$_{rm BH}$) and degeneracies between SED parameters. The effect of BH spin is tested, and we find that while low to moderate spin values (a$_*$ $leq$ 0.9) are compatible with the data in all cases, maximal spin (a$_*$ = 0.998) can only describe the data if the accretion disc is face-on. The outer accretion disc radii are well constrained in 8/11 objects, and are found to be a factor ~5 smaller than the self-gravity radii. We then extend our modelling campaign into the mid-IR regime with WISE photometry, adding components for the host galaxy and dusty torus. Our estimates of the host galaxy luminosities are consistent with the M$_{rm BH}$-bulge relationship, and the measured torus properties (covering factor and temperatures) are in agreement with earlier work, suggesting a predominantly silicate-based grain composition. Finally, we deconvolve the optical-NIR spectra using our SED continuum model. We claim that this is a more physically motivated approach than using empirical descriptions of the continuum such as broken power-laws. For our small sample, we verify previously noted correlations between emission linewidths and luminosities commonly used for single-epoch M$_{rm BH}$ estimates, and observe a statistically significant anti-correlation between [O III] equivalent width and AGN luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا