ﻻ يوجد ملخص باللغة العربية
Monte-Carlo Diffusion Simulations (MCDS) have been used extensively as a ground truth tool for the validation of microstructure models for Diffusion-Weighted MRI. However, methodological pitfalls in the design of the biomimicking geometrical configurations and the simulation parameters can lead to approximation biases. Such pitfalls affect the reliability of the estimated signal, as well as its validity and reproducibility as ground truth data. In this work, we first present a set of experiments in order to study three critical pitfalls encountered in the design of MCDS in the literature, namely, the number of simulated particles and time steps, simplifications in the intra-axonal substrate representation, and the impact of the substrates size on the signal stemming from the extra-axonal space. The results obtained show important changes in the simulated signals and the recovered microstructure features when changes in those parameters are introduced. Thereupon, driven by our findings from the first studies, we outline a general framework able to generate complex substrates. We show the frameworks capability to overcome the aforementioned simplifications by generating a complex crossing substrate, which preserves the volume in the crossing area and achieves a high packing density. The results presented in this work,along with the simulator developed, pave the way towards more realistic and reproducible Monte-Carlo simulations for Diffusion-Weighted MRI.
An intercomparison of microdosimetric and nanodosimetric quantities simulated Monte Carlo codes is in progress with the goal of assessing the uncertainty contribution to simulated results due to the uncertainties of the electron interaction cross-sec
Liquid water has been proved to be an excellent medium for specimen structure imaging by a scanning electron microscope. Knowledge of electron-water interaction physics and particularly the secondary electron yield is essential to the interpretation
The use of office measurement of Blood Pressure (BP) as well as of the mean on day-time, on night-time or on 24h does not accurately describe the changes of the BP circadian rhythm. Moreover, several risk factors affect this rhythm but until now poss
In utero diffusion MRI provides unique opportunities to non-invasively study the microstructure of tissue during fetal development. A wide range of developmental processes, such as the growth of white matter tracts in the brain, the maturation of pla
In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time