ﻻ يوجد ملخص باللغة العربية
A quantum system interacting with a dilute gas experiences irreversible dynamics. The corresponding master equation can be derived within two different approaches: The fully quantum description in the low-density limit and the semiclassical collision model, where the motion of gas particles is classical whereas their internal degrees of freedom are quantum. The two approaches have been extensively studied in the literature, but their predictions have not been compared. This is mainly due to the fact that the low-density limit is extensively studied for mathematical physics purposes, whereas the collision models have been essentially developed for quantum information tasks such as a tractable description of the open quantum dynamics. Here we develop and for the first time compare both approaches for a spin system interacting with a gas of spin particles. Using some approximations, we explicitly find the corresponding master equations including the Lamb shifts and the dissipators. The low density limit in the Born approximation for fast particles is shown to be equivalent to the semiclassical collision model in the stroboscopic approximation. We reveal that both approaches give exactly the same master equation if the gas temperature is high enough. This allows to interchangeably use complicated calculations in the low density limit and rather simple calculations in the collision model.
We consider a repeated quantum interaction model describing a small system $Hh_S$ in interaction with each one of the identical copies of the chain $bigotimes_{N^*}C^{n+1}$, modeling a heat bath, one after another during the same short time intervals
We evaluate the variance of coefficients of the characteristic polynomial of the quantum evolution operator for chaotic 4-regular quantum graphs (networks) via periodic orbits without taking the semiclassical limit. The variance of the n-th coefficie
We show how random unitary dynamics arise from the coupling of an open quantum system to a static environment. Subsequently, we derive a master equation for the reduced system random unitary dynamics and study three specific cases: commuting system a
We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitiv
In the present article, we consistently develop the main issues of the Bloch vectors formalism for an arbitrary finite-dimensional quantum system. In the frame of this formalism, qudit states and their evolution in time, qudit observables and their e