ﻻ يوجد ملخص باللغة العربية
Ensemble learning is a methodology that integrates multiple DNN learners for improving prediction performance of individual learners. Diversity is greater when the errors of the ensemble prediction is more uniformly distributed. Greater diversity is highly correlated with the increase in ensemble accuracy. Another attractive property of diversity optimized ensemble learning is its robustness against deception: an adversarial perturbation attack can mislead one DNN model to misclassify but may not fool other ensemble DNN members consistently. In this paper we first give an overview of the concept of ensemble diversity and examine the three types of ensemble diversity in the context of DNN classifiers. We then describe a set of ensemble diversity measures, a suite of algorithms for creating diversity ensembles and for performing ensemble consensus (voted or learned) for generating high accuracy ensemble output by strategically combining outputs of individual members. This paper concludes with a discussion on a set of open issues in quantifying ensemble diversity for robust deep learning.
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness o
Recent studies have shown that deep neural networks (DNN) are vulnerable to adversarial samples: maliciously-perturbed samples crafted to yield incorrect model outputs. Such attacks can severely undermine DNN systems, particularly in security-sensiti
Ensembles of deep neural networks have achieved great success recently, but they do not offer a proper Bayesian justification. Moreover, while they allow for averaging of predictions over several hypotheses, they do not provide any guarantees for the
Deep neural networks are typically initialized with random weights, with variances chosen to facilitate signal propagation and stable gradients. It is also believed that diversity of features is an important property of these initializations. We cons
In this paper, we consider the problem of assessing the adversarial robustness of deep neural network models under both Markov chain Monte Carlo (MCMC) and Bayesian Dark Knowledge (BDK) inference approximations. We characterize the robustness of each