ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Neural Network Ensembles against Deception: Ensemble Diversity, Accuracy and Robustness

217   0   0.0 ( 0 )
 نشر من قبل Wenqi Wei
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensemble learning is a methodology that integrates multiple DNN learners for improving prediction performance of individual learners. Diversity is greater when the errors of the ensemble prediction is more uniformly distributed. Greater diversity is highly correlated with the increase in ensemble accuracy. Another attractive property of diversity optimized ensemble learning is its robustness against deception: an adversarial perturbation attack can mislead one DNN model to misclassify but may not fool other ensemble DNN members consistently. In this paper we first give an overview of the concept of ensemble diversity and examine the three types of ensemble diversity in the context of DNN classifiers. We then describe a set of ensemble diversity measures, a suite of algorithms for creating diversity ensembles and for performing ensemble consensus (voted or learned) for generating high accuracy ensemble output by strategically combining outputs of individual members. This paper concludes with a discussion on a set of open issues in quantifying ensemble diversity for robust deep learning.



قيم البحث

اقرأ أيضاً

314 - Tianyu Pang , Kun Xu , Chao Du 2019
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness o f individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
342 - Ji Gao , Beilun Wang , Zeming Lin 2017
Recent studies have shown that deep neural networks (DNN) are vulnerable to adversarial samples: maliciously-perturbed samples crafted to yield incorrect model outputs. Such attacks can severely undermine DNN systems, particularly in security-sensiti ve settings. It was observed that an adversary could easily generate adversarial samples by making a small perturbation on irrelevant feature dimensions that are unnecessary for the current classification task. To overcome this problem, we introduce a defensive mechanism called DeepCloak. By identifying and removing unnecessary features in a DNN model, DeepCloak limits the capacity an attacker can use generating adversarial samples and therefore increase the robustness against such inputs. Comparing with other defensive approaches, DeepCloak is easy to implement and computationally efficient. Experimental results show that DeepCloak can increase the performance of state-of-the-art DNN models against adversarial samples.
Ensembles of deep neural networks have achieved great success recently, but they do not offer a proper Bayesian justification. Moreover, while they allow for averaging of predictions over several hypotheses, they do not provide any guarantees for the ir diversity, leading to redundant solutions in function space. In contrast, particle-based inference methods, such as Stein variational gradient descent (SVGD), offer a Bayesian framework, but rely on the choice of a kernel to measure the similarity between ensemble members. In this work, we study different SVGD methods operating in the weight space, function space, and in a hybrid setting. We compare the SVGD approaches to other ensembling-based methods in terms of their theoretical properties and assess their empirical performance on synthetic and real-world tasks. We find that SVGD using functional and hybrid kernels can overcome the limitations of deep ensembles. It improves on functional diversity and uncertainty estimation and approaches the true Bayesian posterior more closely. Moreover, we show that using stochastic SVGD updates, as opposed to the standard deterministic ones, can further improve the performance.
Deep neural networks are typically initialized with random weights, with variances chosen to facilitate signal propagation and stable gradients. It is also believed that diversity of features is an important property of these initializations. We cons truct a deep convolutional network with identical features by initializing almost all the weights to $0$. The architecture also enables perfect signal propagation and stable gradients, and achieves high accuracy on standard benchmarks. This indicates that random, diverse initializations are textit{not} necessary for training neural networks. An essential element in training this network is a mechanism of symmetry breaking; we study this phenomenon and find that standard GPU operations, which are non-deterministic, can serve as a sufficient source of symmetry breaking to enable training.
In this paper, we consider the problem of assessing the adversarial robustness of deep neural network models under both Markov chain Monte Carlo (MCMC) and Bayesian Dark Knowledge (BDK) inference approximations. We characterize the robustness of each method to two types of adversarial attacks: the fast gradient sign method (FGSM) and projected gradient descent (PGD). We show that full MCMC-based inference has excellent robustness, significantly outperforming standard point estimation-based learning. On the other hand, BDK provides marginal improvements. As an additional contribution, we present a storage-efficient approach to computing adversarial examples for large Monte Carlo ensembles using both the FGSM and PGD attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا