ﻻ يوجد ملخص باللغة العربية
Hydrodynamic electronic transport is of fundamental interest due to its presence in strongly correlated materials and connections to areas outside of condensed matter physics; its study will be facilitated by identifying ambipolar hydrodynamic materials in which collisions between thermally activated electrons and holes determine conductivity. Here we present a comprehensive experimental and theoretical study of hydrodynamics in bilayer graphene, and consider the effects of an induced bandgap. For zero bandgap, conductivity at charge neutrality is temperature-independent; its magnitude determined by Planckian dissipation. With a bandgap, conductivity at charge neutrality collapses onto a universal curve. These results demonstrate that electron-hole collision limited transport in bilayer graphene can be readily detected at room temperature using straightforward DC conductivity measurements, providing an easily accessible platform for hydrodynamic investigations.
We report the discovery of a strong and tunable spin lifetime anisotropy with excellent spin lifetimes up to 7.8 ns in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically-controlled spin-orbit
Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number
We analyze the response of bilayer graphene to an external transverse electric field using a variational method. A previous attempt to do so in a recent paper by Falkovsky [Phys. Rev. B 80, 113413 (2009)] is shown to be flawed. Our calculation reaffi
The effects of Coulomb interactions on the electronic properties of bilayer graphene nanoribbons (BGNs) covered by a gate electrode are studied theoretically. The electron density distribution and the potential profile are calculated self-consistentl
Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs