ترغب بنشر مسار تعليمي؟ اضغط هنا

2D-Galactic chemical evolution: the role of the spiral density wave

310   0   0.0 ( 0 )
 نشر من قبل Mercedes Molla
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 2-dimensional chemical evolution code applied to a Milky Way type galaxy, incorporating the role of spiral arms in shaping azimuthal abundance variations, and confront the predicted behaviour with recent observations taken with integral field units. To the usual radial distribution of mass, we add the surface density of the spiral wave and study its effect on star formation and elemental abundances. We compute five different models: one with azimuthal symmetry which depends only on radius, while the other four are subjected to the effect of a spiral density wave. At early times, the imprint of the spiral density wave is carried by both the stellar and star formation surface densities; conversely, the elemental abundance pattern is less affected. At later epochs, however, differences among the models are diluted, becoming almost indistinguishable given current observational uncertainties. At the present time, the largest differences appear in the star formation rate and/or in the outer disc (R$ge$ 18,kpc). The predicted azimuthal oxygen abundance patterns for $t le 2$,Gyr are in reasonable agreement with recent observations obtained with VLT/MUSE for NGC 6754



قيم البحث

اقرأ أيضاً

Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. To quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. We develop a new 2D galactic disc chemical evolution model, capable of following not just radial but also azimuthal inhomogeneities. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, in agreement with the most recent observations in external galaxies, the azimuthal variations are more evident in the outer galactic regions. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure corotation resonance, where the relative speed between spiral and gaseous disc is the slowest. In conclusion we provided a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.
The last decade has seen apparent dramatic progress in large spectroscopic datasets aimed at the study of the Galactic bulge. We consider remaining problems that appear to be intractable with the existing data, including important issues such as whet her the bulge and thick disk actually show distinct chemistry, and apparent dramatic changes in morphology at Solar metallicity, as well as large scale study of the heavy elements (including r-process) in the bulge. Although infrared spectroscopy is powerful, the lack of heavy element atomic transitions in the infrared renders impossible any survey of heavy elements from such data. We argue that uniform, high S/N, high resolution data in the optical offer an outstanding opportunity to resolve these problems and explore other populations in the bulge, such as RR Lyrae and hot HB stars.
In our grid of multiphase chemical evolution models (Molla & Diaz, 2005), star formation in the disk occurs in two steps: first, molecular gas forms, and then stars are created by cloud-cloud collisions or interactions of massive stars with the surro unding molecular clouds. The formation of both molecular clouds and stars are treated through the use of free parameters we refer to as efficiencies. In this work we modify the formation of molecular clouds based on several new prescriptions existing in the literature, and we compare the results obtained for a chemical evolution model of the Milky Way Galaxy regarding the evolution of the Solar region, the radial structure of the Galactic disk, and the ratio between the diffuse and molecular components, HI/H$_2$. Our results show that the six prescriptions we have tested reproduce fairly consistent most of the observed trends, differing mostly in their predictions for the (poorly-constrained) outskirts of the Milky Way and the evolution in time of its radial structure. Among them, the model proposed by Ascasibar et al. (2017), where the conversion of diffuse gas into molecular clouds depends on the local stellar and gas densities as well as on the gas metallicity, seems to provide the best overall match to the observed data.
We have obtained high-resolution, high signal-to-noise spectra for 899 F and G dwarf stars in the Solar neighbourhood. The stars were selected on the basis of their kinematic properties to trace the thin and thick discs, the Hercules stream, and the metal-rich stellar halo. A significant number of stars with kinematic properties in between the thin and thick discs were also observed in order to in greater detail investigate the dichotomy of the Galactic disc. All stars have been homogeneously analysed, using the exact same methods, atomic data, model atmospheres, etc., and also truly differentially to the Sun. Hence, the sample is likely to be free from internal errors, allowing us to, in a multi-dimensional space consisting of detailed elemental abundances, stellar ages, and the full three-dimensional space velocities, reveal very small differences between the stellar populations.
Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized an d ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا