ﻻ يوجد ملخص باللغة العربية
The generation, control, and detection of spin currents in solid-state devices are critical for Joule-heating minimization, spin-based computation, and electrical energy generation from thermal gradients. Although incorporation of spin functionality into technologically important architectures is still in its infancy, advantages over all-electric devices are increasingly becoming clear. Here, we utilize the spin Seebeck effect (SSE) in Pt/Y3Fe5O12 devices to detect light from 390 to 2200 nm. We find the device responsivity is remarkably flat across this technologically important wavelength range, closely following the Pt absorption coefficient. As expected from a SSE-generation mechanism, we observe that the photovoltage and Pt heating dynamics are in strong agreement. To precisely determine the optically created thermal gradient produced from a point-like heat source, we introduce a field-modulation method for measuring the SSE. Our results show broadband optical detection can be performed with devices based solely on spin current generation and detection.
Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y$_{3}$Fe$_{5}$O$_{12}$ (YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory th
Antiferromagnets are beneficial for future spintronic applications due to their zero magnetic moment and ultrafast dynamics. But gaining direct access to their antiferromagnetic order and identifying the properties of individual magnetic sublattices,
How magnetism affects the Seebeck effect is an important issue widely concerned in the thermoelectric community yet remaining elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied $d$-electron based ferro- and anti-ferromagn
Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electron
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and