ﻻ يوجد ملخص باللغة العربية
Controllable geometric manipulation via micromachining techniques provides a promising tool for enhancing useful topological electrical responses relevant to future applications such as quantum information science. Here we present microdevices fabricated with focused ion beam from indium-doped topological insulator Pb1-xSnxTe. With device thickness on the order of 1 {mu}m and an extremely large bulk resistivity, we achieve an unprecedented enhancement of the surface contribution to about 30% of the total conductance near room temperature. The surface contribution increases as the temperature is reduced, becoming dominant below approximately 180 K, compared to 30 K in mm-thickness crystals. In addition to the enhanced surface contribution to normal-state transport, we observe the emergence of a two-dimensional superconductivity below 6 K. Measurements of magnetoresistivity at high magnetic fields reveal a weak antilocalization behavior in the normal-state magnetoconductance at low temperature and a variation in the power-law dependence of resistivity on temperature with field. These results demonstrate that interesting electrical response relevant to practical applications can be achieved by suitable engineering of single crystals.
Topological crystalline insulators (TCIs) are insulating materials whose topological property relies on generic crystalline symmetries. Based on first-principles calculations, we study a three-dimensional (3D) crystal constructed by stacking two-dime
Thin layers of topological insulator materials are quasi-two-dimensional systems featuring a complex interplay between quantum confinement and topological band structure. To understand the role of the spatial distribution of carriers in electrical tr
The surface of a 3D topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetot
We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with the inverse of the penetration depth
Two-dimensional (2D) topological insulators (TIs) with a large bulk band-gap are promising for experimental studies of the quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-g