ﻻ يوجد ملخص باللغة العربية
From a theoretical point of view, there is a strong motivation to consider an MeV-scale reheating temperature induced by long-lived massive particles with masses around the weak scale, decaying only through gravitational interaction. In this study, we investigate lower limits on the reheating temperature imposed by big-bang nucleosynthesis assuming both radiative and hadronic decays of such massive particles. For the first time, effects of neutrino self-interactions and oscillations are taken into account in the neutrino thermalization calculations. By requiring consistency between theoretical and observational values of light element abundances, we find that the reheating temperature should conservatively be $T_{rm RH} gtrsim 1.8$ MeV in the case of the 100% radiative decay, and $T_{rm RH} gtrsim$ 4-5 MeV in the case of the 100% hadronic decays for particle masses in the range of 10 GeV to 100 TeV.
We investigate how sterile neutrinos with a range of masses influence cosmology in MeV-scale reheating temperature scenarios. By computing the production of sterile neutrinos through the combination of mixing and scattering in the early Universe, we
In this work, we revise and update model-independent constraints from Big Bang Nucleosynthesis on MeV-scale particles $phi$ which decay into photons and/or electron-positron pairs. We use the latest determinations of primordial abundances and extend
Usually information from early eras such as reheating is hard to come by. In this paper we argue that, given the right circumstances, right-handed sterile neutrinos decaying to left-handed active ones at relatively late times can carry information fr
In a simple extension of the standard electroweak theory where the phenomenon of lepton flavor mixing is described by a 3x3 unitary matrix V, the electric and magnetic dipole moments of three active neutrinos are suppressed not only by their tiny mas
Meta-stable dark sector particles decaying into electrons or photons may non-trivially change the Hubble rate, lead to entropy injection into the thermal bath of Standard Model particles and may also photodisintegrate light nuclei formed in the early