ﻻ يوجد ملخص باللغة العربية
We present an estimation of the reionization optical depth $tau$ from an improved analysis of the High Frequency Instrument (HFI) data of Planck satellite. By using an improved version of the HFI map-making code, we greatly reduce the residual large scale contamination affecting the data, characterized, but not fully removed, in the Planck 2018 legacy release. This brings the dipole distortion systematic effect, contaminating the very low multipoles, below the noise level. On large scale polarization only data, we measure $tau=0.0566_{-0.0062}^{+0.0053}$ at $68%$ C.L., reducing the Planck 2018 legacy release uncertainty by $sim40%$. Within the $Lambda$CDM model, in combination with the Planck large scale temperature likelihood, and the high-$ell$ temperature and polarization likelihood, we measure $tau=0.059pm0.006$ at $68%$ C.L. which corresponds to a mid-point reionization redshift of $z_{rm re}=8.14pm0.61$ at $68%$ C.L.. This estimation of the reionization optical depth with $10%$ accuracy is the strongest constraint to date.
This paper explores methods for constructing low multipole temperature and polarisation likelihoods from maps of the cosmic microwave background anisotropies that have complex noise properties and partial sky coverage. We use Planck 2018 High Frequen
This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration proce
New determinations are presented of the cosmic infrared background monopole brightness in the Planck HFI bands from 100 GHz to 857 GHz. Planck was not designed to measure the monopole component of sky brightness, so cross-correlation of the 2015 HFI
We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE re
Features during inflation and reionization leave corresponding features in the temperature and polarization power spectra that could potentially explain anomalies in the Planck 2015 data but require a joint analysis to disentangle. We study the inter