ترغب بنشر مسار تعليمي؟ اضغط هنا

Structures of the Massive Vector Boson Propagators at Finite Temperature Illuminated by the Goldstone Equivalence Gauge

211   0   0.0 ( 0 )
 نشر من قبل Yilei Tang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Yi-Lei Tang




اسأل ChatGPT حول البحث

Inspired by the Goldstone equivalence gauge, we study the thermal corrections to an originally massive vector boson by checking the poles and branch cuts. We find that part of the Goldstone boson is spewed out from the longitudinal polarization, becoming a branch cut which can be approximated by the quasi-poles in the thermal environment. In this case, physical Goldstone boson somehow partly recovers. We also show the Feynmann rules for the external legs of these vector boson as well as the recovered Goldstone boson, expecting to simplify the vector boson participated process calculations by adopting the similar tree-level logic as in the zero temperature situation. Gauge boson mixing case are also discussed. Similar results are shown in other gauges, especially in the $R_xi$ gauge.



قيم البحث

اقرأ أيضاً

We study properties of the finite temperature quark propagator by using the SU(3) quenched lattice simulation in the Landau gauge and report numerical results of the standard Wilson quark case as well as the improved clover one. The mass function in the deconfinement phase is different from that of the confinement phase, especially at low momentum regions.
The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Po ssible limitations of these two approaches, such as finite-volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear thermodynamic transition seems to affect only the electric sector. These results imply in particular the confinement of transverse gluons at all temperatures and they can be understood inside the framework of the so-called Gribov-Zwanziger scenario of confinement.
In principle, observables as for example the sphaleron rate or the tunneling rate in a first-order phase transition are gauge-independent. However, in practice a gauge dependence is introduced in explicit perturbative calculations due to the breakdow n of the gradient expansion of the effective action in the symmetric phase. We exemplify the situation using the effective potential of the Abelian Higgs model in the general renormalizable gauge. Still, we find that the quantitative dependence on the gauge choice is small for gauges that are consistent with the perturbative expansion.
168 - Yin-Zhen Xu , Si-Xue Qin , 2021
We study chiral symmetry restoration by analyzing thermal properties of QCDs (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the correlation functions, we solve the Dyson-Schwinger equations and the inhomogeneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation. In the chiral limit, the pion and its partner sigma degenerate at the critical temperature $T_c$. At $T gtrsim T_c$, it is found that the pion rapidly dissociates, which signals deconfinement phase transition. Beyond the chiral limit, the pion dissociation temperature can be used to define the pseudo-critical temperature of chiral phase crossover, which is consistent with that obtained by the maximum point of the chiral susceptibility. The parallel analysis for kaon and pseudoscalar $sbar{s}$ suggests that heavy mesons may survive above $T_c$.
Motivated by the observation that there may exist hadronic excitations even in the quark-gluon plasma (QGP) phase, we investigate how the properties of quarks, especially within the quasi-particle picture, are affected by the coupling with bosonic ex citations at finite temperature (T), employing Yukawa models with a massive scalar (pseudoscalar) and vector (axial-vector) boson of mass m. The quark spectral function and the quasi-dispersion relations are calculated at one-loop order. We find that there appears a three-peak structure in the quark spectral function with a collective nature when T is comparable with m, irrespective of the type of boson considered. Such a multi-peak structure was first found in a chiral model yielding scalar composite bosons with a decay width. We elucidate the mechanism through which the new quark collective excitations are realized in terms of the Landau damping of a quark (an antiquark) induced by scattering with the thermally excited boson, which gives rise to mixing and hence a level repulsion between a quark (antiquark) and an antiquark-hole (quark-hole) in the thermally excited antiquark (quark) distribution. Our results suggest that the quarks in the QGP phase can be described within an interesting quasi-particle picture with a multi-peak spectral function. Because the models employed here are rather generic, our findings may represent a universal phenomenon for fermions coupled to a massive bosonic excitation with a vanishing or small width. The relevance of these results to other fields of physics, such as neutrino physics, is also briefly discussed. In addition, we describe a new aspect of the plasmino excitation obtained in the hard-thermal loop approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا