ﻻ يوجد ملخص باللغة العربية
Based on the scheme of variational Monte Carlo sampling, we develop an accurate and efficient two-dimensional tensor-network algorithm to simulate quantum lattice models. We find that Monte Carlo sampling shows huge advantages in dealing with finite projected entangled pair states, which allows significantly enlarged system size and improves the accuracy of tensor network simulation. We demonstrate our method on the square-lattice antiferromagnetic Heisenberg model up to $32 times 32$ sites, as well as a highly frustrated $J_1-J_2$ model up to $24times 24$ sites. The results, including ground state energy and spin correlations, are in excellent agreement with those of the available quantum Monte Carlo or density matrix renormalization group methods. Therefore, our method substantially advances the calculation of 2D tensor networks for finite systems, and potentially opens a new door towards resolving many challenging strongly correlated quantum many-body problems.
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in t
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to t
The infinite Projected Entangled-Pair State (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm