ﻻ يوجد ملخص باللغة العربية
The notion of index for inclusions of von Neumann algebras goes back to a seminal work of Jones on subfactors of type ${I!I}_1$. In the absence of a trace, one can still define the index of a conditional expectation associated to a subfactor and look for expectations that minimize the index. This value is called the minimal index of the subfactor. We report on our analysis, contained in [GL19], of the minimal index for inclusions of arbitrary von Neumann algebras (not necessarily finite, nor factorial) with finite-dimensional centers. Our results generalize some aspects of the Jones index for multi-matrix inclusions (finite direct sums of matrix algebras), e.g., the minimal index always equals the squared norm of a matrix, that we call emph{matrix dimension}, as it is the case for multi-matrices with respect to the Bratteli inclusion matrix. We also mention how the theory of minimal index can be formulated in the purely algebraic context of rigid 2-$C^*$-categories.
In the first part of this paper, we give a new look at inclusions of von Neumann algebras with finite-dimensional centers and finite Jones index. The minimal conditional expectation is characterized by means of a canonical state on the relative commu
A breakthrough took place in the von Neumann algebra theory when the Tomita-Takesaki theory was established around 1970. Since then, many important issues in the theory were developed through 1970s by Araki, Connes, Haagerup, Takesaki and others, whi
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann
In this article, we prove various smooth uncertainty principles on von Neumann bi-algebras, which unify numbers of uncertainty principles on quantum symmetries, such as subfactors, and fusion bi-algebras etc, studied in quantum Fourier analysis. We a
We consider the general linear group as an invariant of von Neumann factors. We prove that up to complement, a set consisting of all idempotents generating the same right ideal admits a characterisation in terms of properties of the general linear gr