We study the extinction risk of a fragmented population residing on a network of patches coupled by migration, where the local patch dynamics include the Allee effect. We show that mixing between patches dramatically influences the populations viability. Slow migration is shown to always increase the populations global extinction risk compared to the isolated case. At fast migration, we demonstrate that synchrony between patches minimizes the populations extinction risk. Moreover, we discover a critical migration rate that maximizes the extinction risk of the population, and identify an early-warning signal when approaching this state. Our theoretical results are confirmed via the highly-efficient weighted ensemble method. Notably, our analysis can also be applied to studying switching in gene regulatory networks with multiple transcriptional states.