ترغب بنشر مسار تعليمي؟ اضغط هنا

On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems

82   0   0.0 ( 0 )
 نشر من قبل Angela Capel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mixing time of Markovian dissipative evolutions of open quantum many-body systems can be bounded using optimal constants of certain quantum functional inequalities, such as the modified logarithmic Sobolev constant. For classical spin systems, the positivity of such constants follows from a mixing condition for the Gibbs measure, via quasi-factorization results for the entropy. Inspired by the classical case, we present a strategy to derive the positivity of the modified logarithmic Sobolev constant associated to the dynamics of certain quantum systems from some clustering conditions on the Gibbs state of a local, commuting Hamiltonian. In particular we show that for the heat-bath dynamics for 1D systems, the modified logarithmic Sobolev constant is positive under the assumptions of a mixing condition on the Gibbs state and a strong quasi-factorization of the relative entropy.



قيم البحث

اقرأ أيضاً

Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing of the stationary Gibbs states and the rapid decay of the relative entropy on finite-size blocks. Our result leads to the first examples of the positivity of the modified logarithmic Sobolev inequality for quantum lattice spin systems independently of the system size. Moreover, we show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosmans complete analyticity of the free-energy at equilibrium. The latter typically holds above a critical temperature Tc. Our results have wide-ranging applications in quantum information. As an illustration, we discuss four of them: first, using techniques of quantum optimal transport, we show that a quantum annealer subject to a finite range classical noise will output an energy close to that of the fixed point after constant annealing time. Second, we prove Gaussian concentration inequalities for Lipschitz observables and show that the eigenstate thermalization hypothesis holds for certain high-temperture Gibbs states. Third, we prove a finite blocklength refinement of the quantum Stein lemma for the task of asymmetric discrimination of two Gibbs states of commuting Hamiltonians satisfying our conditions. Fourth, in the same setting, our results imply the existence of a local quantum circuit of logarithmic depth to prepare Gibbs states of a class of commuting Hamiltonians.
128 - J. Unterberger 2016
We study in this article the hydrodynamic limit in the macroscopic regime of the coupled system of stochastic differential equations, begin{equation} dlambda_t^i=frac{1}{sqrt{N}} dW_t^i - V(lambda_t^i) dt+ frac{beta}{2N} sum_{j ot=i} frac{dt}{lambda^ i_t-lambda^j_t}, qquad i=1,ldots,N, end{equation} with $beta>1$, sometimes called generalized Dysons Brownian motion, describing the dissipative dynamics of a log-gas of $N$ equal charges with equilibrium measure corresponding to a $beta$-ensemble, with sufficiently regular convex potential $V$. The limit $Ntoinfty$ is known to satisfy a mean-field Mac-Kean-Vlasov equation. We prove that, for suitable initial conditions, fluctuations around the limit are Gaussian and satisfy an explicit PDE. The proof is very much indebted to the harmonic potential case treated in Israelsson cite{Isr}. Our key argument consists in showing that the time-evolution generator may be written in the form of a transport operator on the upper half-plane, plus a bounded non-local operator interpreted in terms of a signed jump process. As an essential technical argument ensuring the convergence of the above scheme, we give an $N$-independent large-deviation type estimate for the probability that $sup_{tin[0,T]}max_{i=1,ldots,N} |lambda_t^i|$ is large, based on a multi-scale argument and entropic bounds.
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and a dissipative piece, represented by a hermiticity-preserving superoperator; however, the division of open system dynamics into unitary and dissipative pieces is non-unique. For finite-dimensional quantum systems, we resolve this non-uniqueness by specifying a norm on the space of dissipative superoperators and defining the canonical Hamiltonian to be the one whose dissipator is minimal. We show that the canonical Hamiltonian thus defined is equivalent to the Hamiltonian initially defined by Lindblad, and that it is uniquely specified by requiring the dissipators jump operators to be traceless. For a system weakly coupled to its environment, we give a recursive formula for computing the canonical effective Hamiltonian to arbitrary orders in perturbation theory, which we can think of as a perturbative scheme for renormalizing the systems bare Hamiltonian.
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced over the dissipative subspace ${cal H}_0$, evolves according to another Lindblad dynamics, with renormalized effective Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov dynamics. As a direct application of this result, we propose a computationally-efficient exact method to evaluate the nonequilibrium steady state of a general system in the limit of strong dissipation.
207 - M. Tokieda , K. Hagino 2019
To investigate a system coupled to a harmonic oscillator bath, we propose a new approach based on a phonon number representation of the bath. Compared to the method of the hierarchical equations of motion, the new approach is computationally much les s expensive in a sense that a reduced density matrix is obtained by calculating the time evolution of vectors, instead of matrices, which enables one to deal with large dimensional systems. As a benchmark test, we consider a quantum damped harmonic oscillator, and show that the exact results can be well reproduced. In addition to the reduced density matrix, our approach also provides a link to the total wave function by introducing new boson operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا