ترغب بنشر مسار تعليمي؟ اضغط هنا

A phylogenetic approach disentangles interlocus gene conversion tract length and initiation rate

57   0   0.0 ( 0 )
 نشر من قبل Xiang Ji
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interlocus gene conversion (IGC) homogenizes paralogs. Little is known regarding the mutation events that cause IGC and even less is known about the IGC mutations that experience fixation. To disentangle the rates of fixed IGC mutations from the tract lengths of these fixed mutations, we employ a composite likelihood procedure. We characterize the procedure with simulations. We apply the procedure to duplicated primate introns and to protein-coding paralogs from both yeast and primates. Our estimates from protein-coding data concerning the mean length of fixed IGC tracts were unexpectedly low and are associated with high degrees of uncertainty. In contrast, our estimates from the primate intron data had lengths in the general range expected from IGC mutation studies. While it is challenging to separate the rate at which fixed IGC mutations initiate from the average number of nucleotide positions that these IGC events affect, all of our analyses indicate that IGC is responsible for a substantial proportion of evolutionary change in duplicated regions. Our results suggest that IGC should be considered whenever the evolution of multigene families is examined.



قيم البحث

اقرأ أيضاً

RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is current ly performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression.
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from si ngle-cell sequencing or flow-cytometry experiments into regulatory dynamics. We show how static population snapshots of co-variability can be exploited to rigorously infer properties of gene expression dynamics when gene expression reporters probe their upstream dynamics on separate time-scales. This can be experimentally exploited in dual-reporter experiments with fluorescent proteins of unequal maturation times, thus turning an experimental bug into an analysis feature. We derive correlation conditions that detect the presence of closed-loop feedback regulation in gene regulatory networks. Furthermore, we show how genes with cell-cycle dependent transcription rates can be identified from the variability of co-regulated fluorescent proteins. Similar correlation constraints might prove useful in other areas of science in which static correlation snapshots are used to infer causal connections between dynamically interacting components.
130 - J. M. Zaldivar 2009
Pristine coastal shallow systems are usually dominated by extensive meadows of seagrass species, which are assumed to take advantage of nutrient supply from sediment. An increasing nutrient input is thought to favour phytoplankton, epiphytic microalg ae, as well as opportunistic ephemeral macroalgae that coexist with seagrasses. The primary cause of shifts and succession in the macrophyte community is the increase of nutrient load to water; however temperature plays also an important role. A competition model between rooted seagrass (Zostera marina), macroalgae (Ulva sp), and phytoplankton has been developed to analyse the succession of primary producer communities in these systems. Successions of dominance states, with different resilience characteristics, are found when modifying the input of nutrients and the seasonal temperature and light intensity forcing.
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using a dynamic causal model of reported cases and deaths from multiple countries, we evaluated the evidence models of progressively longer periods of immunity. The results speak to an effective population immunity of about three months that, under the model, defers any second wave for approximately six months in most countries. This may have implications for the window of opportunity for tracking and tracing, as well as for developing vaccination programmes, and other therapeutic interventions.
156 - Daniel L. Rabosky 2014
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا